1. Skin lesion classification from dermoscopic images using deep learning techniques
- Author
-
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. GPI - Grup de Processament d'Imatge i Vídeo, Romero-Lopez, Adrià, Giró Nieto, Xavier, Burdick, Jack, Marques, Oge, Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. GPI - Grup de Processament d'Imatge i Vídeo, Romero-Lopez, Adrià, Giró Nieto, Xavier, Burdick, Jack, and Marques, Oge
- Abstract
The recent emergence of deep learning methods for medical image analysis has enabled the development of intelligent medical imaging-based diagnosis systems that can assist the human expert in making better decisions about a patient’s health. In this paper we focus on the problem of skin lesion classification, particularly early melanoma detection, and present a deep-learning based approach to solve the problem of classifying a dermoscopic image containing a skin lesion as malignant or benign. The proposed solution is built around the VGGNet convolutional neural network architecture and uses the transfer learning paradigm. Experimental results are encouraging: on the ISIC Archive dataset, the proposed method achieves a sensitivity value of 78.66%, which is significantly higher than the current state of the art on that dataset., Postprint (author's final draft)
- Published
- 2017