Although canonical molecular orbital (CMO) calculations for proteins are very useful for protein engineering, they are computationally expensive and difficult to achieve because proteins are large molecules. We had developed the third-generation density functional (3G DF) method, which performed electronic state calculation with high efficiency in parallel computer by performing only matrix operation during the SCF calculation. In this study, by applying the powerful computing platform of graphic processing unit (GPU) to our 3G DF calculation method, we constructed a computing environment that achieved the large-scale CMO computation with high efficiency.Although canonical molecular orbital (CMO) calculations for proteins are very useful for protein engineering, they are computationally expensive and difficult to achieve because proteins are large molecules. We had developed the third-generation density functional (3G DF) method, which performed electronic state calculation with high efficiency in parallel computer by performing only matrix operation during the SCF calculation. In this study, by applying the powerful computing platform of graphic processing unit (GPU) to our 3G DF calculation method, we constructed a computing environment that achieved the large-scale CMO computation with high efficiency.