1. Chain and local dynamics of polyisoprene as probed by experiments and computer simulations
- Author
-
Nikos Hadjichristidis, Florian Müller-Plathe, Roland Faller, F. Kremer, George Fytas, Manolis Doxastakis, and Doros N. Theodorou
- Subjects
Molecular dynamics ,Chemistry ,Monte Carlo method ,Atom ,Relaxation (NMR) ,Analytical chemistry ,General Physics and Astronomy ,Dielectric ,Physical and Theoretical Chemistry ,Neutron scattering ,Pulsed field gradient ,Molecular physics ,Light scattering - Abstract
The dynamics of designed short polyisoprene (PI) chains in the melt is investigated on a wide temperature window using dielectric relaxation spectroscopy and pulsed field gradient nuclear magnetic resonance (NMR). At high temperatures, molecular dynamics (MD) simulations performed using two different models (an explicit atom model and a united atom one) capture very well the dynamic properties documented experimentally. Structures pre-equilibrated with end-bridging Monte Carlo are used as initial configurations for MD runs at different temperatures, providing predictions for the temperature dependence of the dynamics of this bulk PI. Local dynamics is unique, independently of the probe (dielectric relaxation, dynamic light scattering, nuclear magnetic resonance, neutron scattering), although mean correlation times are significantly affected, to different extents, by librations. Chain dynamics over the molecular weight and temperature range studied can be described well by the Rouse model, as shown by both...
- Published
- 2003
- Full Text
- View/download PDF