1. Correlation between thermodynamic and kinetic fragilities in nonpolymeric glass-forming liquids
- Author
-
Oleg Senkov and Daniel Miracle
- Subjects
Fragility ,Excess heat ,Chemistry ,General Physics and Astronomy ,Thermodynamics ,Liquidus ,Physical and Theoretical Chemistry ,Glass transition ,Kinetic energy ,Supercooling ,Absolute zero ,Glass forming - Abstract
A phenomenological relationship between reduced excess heat capacity of supercooled liquid DeltaC(p)(exc)(T(g))DeltaS(m) at the glass transition temperature T(g), fragility index m, and reduced glass transition temperature T(rg)=T(g)T(m), where T(m) is the melting (liquidus) temperature, was derived for fragile nonpolymeric glass-forming liquids under the assumptions that the fragile behavior of these liquids is described by the Vogel-Fulcher-Tammann (VFT) equation; the excess heat capacity of liquid is inversely proportional to the absolute temperature and the VFT temperature T(0) is equal to the Kauzmann temperature T(K). It was found that DeltaC(p)(exc)(T(g))DeltaS(m) is a composite function of m and T(rg), which indicates that the empirical correlation DeltaC(p)(exc)(T(g))DeltaS(m)=0.025m recently identified by Wang et al. [J. Chem Phys. 125, 074505 (2006)] is probably valid only for liquids which have nearly the same values of T(rg).
- Published
- 2008
- Full Text
- View/download PDF