1. Integrated light-sheet imaging and flow-based enquiry (iLIFE) system for 3D in-vivo imaging of multicellular organism
- Author
-
Ravi Manjithaya, K. Rajan, C. K. Rasmi, Kalyanee Shirlekar, Varsha Singh, Partha Pratim Mondal, and Sreedevi Padmanabhan
- Subjects
0301 basic medicine ,Materials science ,Physics and Astronomy (miscellaneous) ,3D reconstruction ,Microfluidics ,Resolution (electron density) ,Ranging ,02 engineering and technology ,Iterative reconstruction ,021001 nanoscience & nanotechnology ,Frame rate ,03 medical and health sciences ,Biological specimen ,030104 developmental biology ,0210 nano-technology ,Preclinical imaging ,Biomedical engineering - Abstract
We propose and demonstrate a light-sheet-based 3D interrogation system on a microfluidic platform for screening biological specimens during flow. To achieve this, a diffraction-limited light-sheet (with a large field-of-view) is employed to optically section the specimens flowing through the microfluidic channel. This necessitates optimization of the parameters for the illumination sub-system (illumination intensity, light-sheet width, and thickness), microfluidic specimen platform (channel-width and flow-rate), and detection sub-system (camera exposure time and frame rate). Once optimized, these parameters facilitate cross-scctional imaging and 3D reconstruction of biological specimens. The proposed integrated light-sheet imaging and flow-based enquiry (iLIFE) imaging technique enables single-shot sectional imaging of a range of specimens of varying dimensions, ranging from a single cell (HeLa cell) to a multicellular organism (C. elegans). 3D reconstruction of the entire C. elegans is achieved in real-time and with an exposure time of few hundred micro-seconds. A maximum likelihood technique is developed and optimized for the iLIFE imaging system. We observed an intracellular resolution for mitochondria-labeled HeLa cells, which demonstrates the dynamic resolution of the iLIFE system. The proposed technique is a step towards achieving flow-based 3D imaging. We expect potential applications in diverse fields such as structural biology and biophysics. Published by AIP Publishing.
- Published
- 2017