1. Observation of the fastest chemical processes in the radiolysis of water
- Author
-
Loh, Z-H, Doumy, G., Arnold, C., Kjellsson, Ludvig, Southworth, S. H., Al Haddad, A., Kumagai, Y., Tu, M-F, Ho, P. J., March, A. M., Schaller, R. D., Yusof, M. S. Bin Mohd, Debnath, T., Simon, M., Welsch, R., Inhester, L., Khalili, K., Nanda, K., Krylov, A. , I, Moeller, S., Coslovich, G., Koralek, J., Minitti, M. P., Schlotter, W. F., Rubensson, Jan-Erik, Santra, R., Young, L., Loh, Z-H, Doumy, G., Arnold, C., Kjellsson, Ludvig, Southworth, S. H., Al Haddad, A., Kumagai, Y., Tu, M-F, Ho, P. J., March, A. M., Schaller, R. D., Yusof, M. S. Bin Mohd, Debnath, T., Simon, M., Welsch, R., Inhester, L., Khalili, K., Nanda, K., Krylov, A. , I, Moeller, S., Coslovich, G., Koralek, J., Minitti, M. P., Schlotter, W. F., Rubensson, Jan-Erik, Santra, R., and Young, L.
- Abstract
Elementary processes associated with ionization of liquid water provide a framework for understanding radiation-matter interactions in chemistry and biology. Although numerous studies have been conducted on the dynamics of the hydrated electron, its partner arising from ionization of liquid water, H2O+, remains elusive. We used tunable femtosecond soft x-ray pulses from an x-ray free electron laser to reveal the dynamics of the valence hole created by strong-field ionization and to track the primary proton transfer reaction giving rise to the formation of OH. The isolated resonance associated with the valence hole (H2O+/OH) enabled straightforward detection. Molecular dynamics simulations revealed that the x-ray spectra are sensitive to structural dynamics at the ionization site. We found signatures of hydrated-electron dynamics in the x-ray spectrum.
- Published
- 2020
- Full Text
- View/download PDF