1. Colorectal Cancer Organoid-Stroma Biobank Allows Subtype-Specific Assessment of Individualized Therapy Responses.
- Author
-
Farin HF, Mosa MH, Ndreshkjana B, Grebbin BM, Ritter B, Menche C, Kennel KB, Ziegler PK, Szabó L, Bollrath J, Rieder D, Michels BE, Kress A, Bozlar M, Darvishi T, Stier S, Kur IM, Bankov K, Kesselring R, Fichtner-Feigl S, Brüne B, Goetze TO, Al-Batran SE, Brandts CH, Bechstein WO, Wild PJ, Weigert A, Müller S, Knapp S, Trajanoski Z, and Greten FR
- Subjects
- Humans, Biological Specimen Banks, Tumor Cells, Cultured, Organoids pathology, Tumor Microenvironment genetics, Colorectal Neoplasms drug therapy, Colorectal Neoplasms genetics, Colorectal Neoplasms metabolism, Cancer-Associated Fibroblasts metabolism
- Abstract
In colorectal cancers, the tumor microenvironment plays a key role in prognosis and therapy efficacy. Patient-derived tumor organoids (PDTO) show enormous potential for preclinical testing; however, cultured tumor cells lose important characteristics, including the consensus molecular subtypes (CMS). To better reflect the cellular heterogeneity, we established the colorectal cancer organoid-stroma biobank of matched PDTOs and cancer-associated fibroblasts (CAF) from 30 patients. Context-specific phenotyping showed that xenotransplantation or coculture with CAFs improves the transcriptomic fidelity and instructs subtype-specific stromal gene expression. Furthermore, functional profiling in coculture exposed CMS4-specific therapeutic resistance to gefitinib and SN-38 and prognostic expression signatures. Chemogenomic library screening identified patient- and therapy-dependent mechanisms of stromal resistance including MET as a common target. Our results demonstrate that colorectal cancer phenotypes are encrypted in the cancer epithelium in a plastic fashion that strongly depends on the context. Consequently, CAFs are essential for a faithful representation of molecular subtypes and therapy responses ex vivo., Significance: Systematic characterization of the organoid-stroma biobank provides a resource for context dependency in colorectal cancer. We demonstrate a colorectal cancer subtype memory of PDTOs that is independent of specific driver mutations. Our data underscore the importance of functional profiling in cocultures for improved preclinical testing and identification of stromal resistance mechanisms. This article is featured in Selected Articles from This Issue, p. 2109., (©2023 The Authors; Published by the American Association for Cancer Research.)
- Published
- 2023
- Full Text
- View/download PDF