1. The kinase IRAK4 promotes endosomal TLR and immune complex signaling in B cells and plasmacytoid dendritic cells.
- Author
-
Corzo CA, Varfolomeev E, Setiadi AF, Francis R, Klabunde S, Senger K, Sujatha-Bhaskar S, Drobnick J, Do S, Suto E, Huang Z, Eastham-Anderson J, Katewa A, Pang J, Domeyer M, Dela Cruz C, Paler-Martinez A, Lau VWC, Hadadianpour A, Ramirez-Carrozi V, Sun Y, Bao K, Xu D, Hunley E, Brightbill HD, Warming S, Roose-Girma M, Wong A, Tam L, Emson CL, Crawford JJ, Young WB, Pappu R, McKenzie BS, Asghari V, Vucic D, Hackney JA, Austin CD, Lee WP, Lekkerkerker A, Ghilardi N, Bryan MC, Kiefer JR, Townsend MJ, and Zarrin AA
- Subjects
- Agammaglobulinaemia Tyrosine Kinase, Animals, Endosomes genetics, Humans, Interleukin-1 Receptor-Associated Kinases genetics, Membrane Glycoproteins genetics, Mice, Toll-Like Receptor 7 genetics, Dendritic Cells metabolism, Endosomes metabolism, Interleukin-1 Receptor-Associated Kinases metabolism, Membrane Glycoproteins metabolism, Plasma Cells metabolism, Signal Transduction, Toll-Like Receptor 7 metabolism
- Abstract
The dysregulation of multiple signaling pathways, including those through endosomal Toll-like receptors (TLRs), Fc gamma receptors (FcγR), and antigen receptors in B cells (BCR), promote an autoinflammatory loop in systemic lupus erythematosus (SLE). Here, we used selective small-molecule inhibitors to assess the regulatory roles of interleukin-1 receptor (IL-1R)-associated kinase 4 (IRAK4) and Bruton's tyrosine kinase (BTK) in these pathways. The inhibition of IRAK4 repressed SLE immune complex- and TLR7-mediated activation of human plasmacytoid dendritic cells (pDCs). Correspondingly, the expression of interferon (IFN)-responsive genes (IRGs) in cells and in mice was positively regulated by the kinase activity of IRAK4. Both IRAK4 and BTK inhibition reduced the TLR7-mediated differentiation of human memory B cells into plasmablasts. TLR7-dependent inflammatory responses were differentially regulated by IRAK4 and BTK by cell type: In pDCs, IRAK4 positively regulated NF-κB and MAPK signaling, whereas in B cells, NF-κB and MAPK pathways were regulated by both BTK and IRAK4. In the pristane-induced lupus mouse model, inhibition of IRAK4 reduced the expression of IRGs during disease onset. Mice engineered to express kinase-deficient IRAK4 were protected from both chemical (pristane-induced) and genetic (NZB/W_F1 hybrid) models of lupus development. Our findings suggest that kinase inhibitors of IRAK4 might be a therapeutic in patients with SLE., (Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2020
- Full Text
- View/download PDF