1. Structural evidence for a two-metal-ion mechanism of group I intron splicing
- Author
-
Stahley, Mary R. and Strobel, Scott A.
- Subjects
Metal ions -- Research ,Phosphorylase -- Research ,RNA -- Research ,Introns -- Research ,Science and technology ,Research - Abstract
We report the 3.4 angstrom crystal structure of a catalytically active group I intron splicing intermediate containing the complete intron, both exons, the scissile phosphate, and all of the functional groups implicated in catalytic metal ion coordination, including the 2'-OH of the terminal guanosine. This structure suggests that, like protein phosphoryltransferases, an RNA phosphoryltransferase can use a two-metal-ion mechanism. Two [Mg.sup.2+] ions are positioned 3.9 angstroms apart and are directly coordinated by all six of the biochemically predicted ligands. The evolutionary convergence of RNA and protein active sites on the same inorganic architecture highlights the intrinsic chemical capacity of the two-metal-ion catalytic mechanism for phosphoryl transfer., Divalent metal ions are used in the active sites of a variety of protein phosphoryltransfer enzymes, including those required for replication, transcription, and cell signaling (1-3). Structural and biochemical studies [...]
- Published
- 2005