1. Targeting a neoantigen derived from a common TP53 mutation.
- Author
-
Hsiue EH, Wright KM, Douglass J, Hwang MS, Mog BJ, Pearlman AH, Paul S, DiNapoli SR, Konig MF, Wang Q, Schaefer A, Miller MS, Skora AD, Azurmendi PA, Murphy MB, Liu Q, Watson E, Li Y, Pardoll DM, Bettegowda C, Papadopoulos N, Kinzler KW, Vogelstein B, Gabelli SB, and Zhou S
- Subjects
- Alleles, Animals, Antibodies, Bispecific chemistry, Antibodies, Bispecific therapeutic use, Antibodies, Neoplasm chemistry, Antibodies, Neoplasm therapeutic use, Arginine genetics, COS Cells, Chlorocebus aethiops, Female, HEK293 Cells, HLA-A2 Antigen chemistry, HLA-A2 Antigen genetics, Histidine genetics, Humans, Immunization, Passive, Jurkat Cells, Lymphocyte Activation, Mice, Inbred NOD, Mutation, T-Lymphocytes immunology, Tumor Suppressor Protein p53 chemistry, Tumor Suppressor Protein p53 genetics, Xenograft Model Antitumor Assays, Mice, Antibodies, Bispecific immunology, Antibodies, Neoplasm immunology, Antigens, Neoplasm immunology, HLA-A2 Antigen immunology, Neoplasms therapy, Tumor Suppressor Protein p53 immunology
- Abstract
TP53 (tumor protein p53) is the most commonly mutated cancer driver gene, but drugs that target mutant tumor suppressor genes, such as TP53 , are not yet available. Here, we describe the identification of an antibody highly specific to the most common TP53 mutation (R175H, in which arginine at position 175 is replaced with histidine) in complex with a common human leukocyte antigen-A (HLA-A) allele on the cell surface. We describe the structural basis of this specificity and its conversion into an immunotherapeutic agent: a bispecific single-chain diabody. Despite the extremely low p53 peptide-HLA complex density on the cancer cell surface, the bispecific antibody effectively activated T cells to lyse cancer cells that presented the neoantigen in vitro and in mice. This approach could in theory be used to target cancers containing mutations that are difficult to target in conventional ways., (Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2021
- Full Text
- View/download PDF