1. Spacecraft sample collection and subsurface excavation of asteroid (101955) Bennu.
- Author
-
Lauretta DS, Adam CD, Allen AJ, Ballouz RL, Barnouin OS, Becker KJ, Becker T, Bennett CA, Bierhaus EB, Bos BJ, Burns RD, Campins H, Cho Y, Christensen PR, Church ECA, Clark BE, Connolly HC Jr, Daly MG, DellaGiustina DN, Drouet d'Aubigny CY, Emery JP, Enos HL, Kasper SF, Garvin JB, Getzandanner K, Golish DR, Hamilton VE, Hergenrother CW, Kaplan HH, Keller LP, Lessac-Chenen EJ, Liounis AJ, Ma H, McCarthy LK, Miller BD, Moreau MC, Morota T, Nelson DS, Nolau JO, Olds R, Pajola M, Pelgrift JY, Polit AT, Ravine MA, Reuter DC, Rizk B, Rozitis B, Ryan AJ, Sahr EM, Sakatani N, Seabrook JA, Selznick SH, Skeen MA, Simon AA, Sugita S, Walsh KJ, Westermann MM, Wolner CWV, and Yumoto K
- Abstract
Carbonaceous asteroids, such as (101955) Bennu, preserve material from the early Solar System, including volatile compounds and organic molecules. We report spacecraft imaging and spectral data collected during and after retrieval of a sample from Bennu's surface. The sampling event mobilized rocks and dust into a debris plume, excavating a 9-meter-long elliptical crater. This exposed material is darker, spectrally redder, and more abundant in fine particulates than the original surface. The bulk density of the displaced subsurface material was 500 to 700 kilograms per cubic meter, which is about half that of the whole asteroid. Particulates that landed on instrument optics spectrally resemble aqueously altered carbonaceous meteorites. The spacecraft stored 250 ± 101 grams of material, which will be delivered to Earth in 2023.
- Published
- 2022
- Full Text
- View/download PDF