1. Measurement of 13C and 15N isotopic composition on nanomolar quantities of C and N.
- Author
-
Polissar PJ, Fulton JM, Junium CK, Turich CC, and Freeman KH
- Abstract
We describe a trapping and chromatography system that cryogenically removes CO(2) and N(2) generated from sample combustion in an elemental analyzer (EA) and introduces these gases into a low-flow helium carrier stream for isotopic analysis. The sample size required for measurement by this system (termed nano-EA/IRMS) is almost 3 orders of magnitude less than conventional EA analyses and fills an important niche in the range of analytical isotopic methods. Only 25 nmol of N and 41 nmol of C are needed to achieve 1.0 per thousand precision (2sigma) from a single measurement while larger samples and replicate measurements provide better precision. Analyses of standards demonstrate that nano-EA measurements are both accurate and precise, even on nanomolar quantities of C and N. Conventional and nano-EA measurements on international and laboratory standards are indistinguishable within analytical precision. Likewise, nano-EA values for international standards do not differ statistically from their consensus values. Both observations indicate the nano-EA measurements are comparable to conventional EA analyses and accurately reproduce the VPDB and AIR isotopic scales. Critical to the success of the nano-EA system is the procedure for removing the blank contribution to the measured values. Statistical treatment of uncertainties for this procedure yields an accurate method for calculating internal and external precision.
- Published
- 2009
- Full Text
- View/download PDF