Pilar Espinet-Gonzalez, Enrique Barrigón, Gaute Otnes, Giuliano Vescovi, Colin Mann, Ryan M. France, Alex J. Welch, Matthew S. Hunt, Don Walker, Michael D. Kelzenberg, Ingvar Åberg, Magnus T. Borgström, Lars Samuelson, and Harry A. Atwater
Space power systems require photovoltaics that are lightweight, efficient, reliable, and capable of operating for years or decades in space environment. Current solar panels use planar multijunction, III-V based solar cells with very high efficiency, but their specific power (power to weight ratio) is limited by the added mass of radiation shielding (e.g., coverglass) required to protect the cells from the high-energy particle radiation that occurs in space. Here, we demonstrate that III-V nanowire-array solar cells have dramatically superior radiation performance relative to planar solar cell designs and show this for multiple cell geometries and materials, including GaAs and InP. Nanowire cells exhibit damage thresholds ranging from ∼10-40 times higher than planar control solar cells when subjected to irradiation by 100-350 keV protons and 1 MeV electrons. Using Monte Carlo simulations, we show that this improvement is due in part to a reduction in the displacement density within the wires arising from their nanoscale dimensions. Radiation tolerance, combined with the efficient optical absorption and the improving performance of nanowire photovoltaics, indicates that nanowire arrays could provide a pathway to realize high-specific-power, substrate-free, III-V space solar cells with substantially reduced shielding requirements. More broadly, the exceptional reduction in radiation damage suggests that nanowire architectures may be useful in improving the radiation tolerance of other electronic and optoelectronic devices.