1. Extreme Metastability of Diamond and its Transformation to the BC8 Post-Diamond Phase of Carbon.
- Author
-
Nguyen-Cong K, Willman JT, Gonzalez JM, Williams AS, Belonoshko AB, Moore SG, Thompson AP, Wood MA, Eggert JH, Millot M, Zepeda-Ruiz LA, and Oleynik II
- Abstract
Diamond possesses exceptional physical properties due to its remarkably strong carbon-carbon bonding, leading to significant resilience to structural transformations at very high pressures and temperatures. Despite several experimental attempts, synthesis and recovery of the theoretically predicted post-diamond BC8 phase remains elusive. Through quantum-accurate multimillion atom molecular dynamics (MD) simulations, we have uncovered the extreme metastability of diamond at very high pressures, significantly exceeding its range of thermodynamic stability. We predict the post-diamond BC8 phase to be experimentally accessible only within a narrow high pressure-temperature region of the carbon phase diagram. The diamond to BC8 transformation proceeds through premelting followed by BC8 nucleation and growth in the metastable carbon liquid. We propose a double-shock compression pathway for BC8 synthesis, which is currently being explored in experiments at the National Ignition Facility.
- Published
- 2024
- Full Text
- View/download PDF