1. Electrochemical Determination of Fentanyl Using Carbon Nanofiber-Modified Electrodes.
- Author
-
Marenco AJ, Pillai RG, Harris KD, Chan NWC, and Jemere AB
- Abstract
In this work, we report the direct electrochemical oxidation of fentanyl using commercial screen-printed carbon electrodes (SPCEs) modified with carboxyl-functionalized carbon nanofibers (fCNFs). CNFs have surface chemistry and reactivity similar to carbon nanotubes (CNTs), yet they are easier to produce and are of a lower cost than CNTs. By monitoring the current produced during the electrochemical oxidation of fentanyl, variables such as fCNF loading, fentanyl accumulation time, electrolyte pH, and differential pulse voltammetry parameters were optimized. Under an optimized set of conditions, the fCNF/SPCEs responded linearly to fentanyl in the concentration range of 0.125-10 μM, with a limit of detection of 75 nM. The fCNF/SPCEs also demonstrated excellent selectivity against common cutting agents found in illicit drugs (e.g., glucose, sucrose, caffeine, acetaminophen, and theophylline) and interferents found in biological samples (e.g., ascorbic acid, NaCl, urea, creatinine, and uric acid). The performance of the sensor was also successfully tested using fentanyl spiked into an artificial urine sample. The straightforward electrode assembly process, low cost, ease of use, and rapid response make the fCNF/SPCEs prime candidates for the detection of fentanyl in both physiological samples and street drugs., Competing Interests: The authors declare no competing financial interest., (Crown © 2024. Published by American Chemical Society.)
- Published
- 2024
- Full Text
- View/download PDF