1. Cooperative CO2 Absorption Isotherms from a Bifunctional Guanidine and Bifunctional Alcohol
- Author
-
Zachary Oh, Aaron P. Esser-Kahn, Stanley C. Hiew, Hemakesh Mohapatra, Du T. Nguyen, Rachel C. Steinhardt, and Richard Truong
- Subjects
010405 organic chemistry ,Chemistry ,Precipitation (chemistry) ,General Chemical Engineering ,Ether ,Alcohol ,General Chemistry ,010402 general chemistry ,01 natural sciences ,0104 chemical sciences ,lcsh:Chemistry ,chemistry.chemical_compound ,Chemical engineering ,lcsh:QD1-999 ,Phase (matter) ,Co2 absorption ,Absorption (chemistry) ,Bifunctional ,Guanidine - Abstract
Designing new liquids for CO2 absorption is a challenge in CO2 removal. Here, achieving low regeneration energies while keeping high selectivity and large capacity are current challenges. Recent cooperative metal–organic frameworks have shown the potential to address many of these challenges. However, many absorbent systems and designs rely on liquid capture agents. We present herein a liquid absorption system which exhibits cooperative CO2 absorption isotherms. Upon introduction, CO2 uptake is initially suppressed, followed by an abrupt increase in absorption. The liquid consists of a bifunctional guanidine and bifunctional alcohol, which, when dissolved in bis(2-methoxyethyl) ether, forms a secondary viscous phase within seconds in response to increases in CO2. The precipitation of this second viscous phase drives CO2 absorption from the gas phase. The isotherm of the bifunctional system differs starkly from the analogous monofunctional system, which exhibits limited CO2 uptake across the same pressure ...
- Published
- 2017