Peng Wang, Voronkova, Maria, Luanpitpong, Sudjit, He, Xiaoqing, Riedel, Heimo, Dinu, Cerasela Z., Liying Wang, and Yon Rojanasakul
Carbon nanotubes (CNTs) represent a major class of engineered nanomaterials that are being used in diverse fields. However, their use has increasingly become a concern because of their carcinogenic potential. Accumulating evidence has demonstrated that certain types of CNTs are carcinogenic or tumor-promoting in animal models. However, the underlying molecular and cellular mechanisms are unclear. Here, we report that chronic exposure to single-walled (SW) CNTs results in the induction of Slug, a key transcription factor that induces an epithelial-mesenchymal transition (EMT), in human lung epithelial cells. We show that SWCNT-induced Slug upregulation plays a critical role in the aggressive phenotype of SWCNT-exposed cells, which includes increased cell migration, invasion, and anchorage-independent cell growth. Our in vivo studies also show that SWCNT-induced Slug upregulation and EMT activation play a pivotal role in tumor formation and metastasis. Our findings illustrate a direct link between CNT-induced Slug upregulation, EMT activation, and tumor formation and metastasis, and they highlight the potential of CNT-induced Slug upregulation as a target for future risk assessment and prevention of CNT-associated diseases. [ABSTRACT FROM AUTHOR]