Aromatic fractions derived from aerosol samples were characterized by gas chromatography and mass spectrometry (GC-MS), high temperature simulated distillation (S1MDIS), and positive-ion atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), respectively. It was found that about 27 wt % compounds in aromatic fractions could not be eluted from a GC column and some large molecule PAHs were neglected in GC-MS analysis. APPI FT-ICR MS was proven to be a powerful approach for characterizing the molecular composition of aromatics, especially for the large molecular species. An aromatic sample from Beijing urban aerosol was successfully characterized by APPI FT-ICR MS. Results showed that most abundant aromatic compounds in PM2.5, (particles with aerodynamic diameter ⩽2.5 μm) were highly condensed hydrocarbons with 4-8 aromatic rings and their homologues with very short alkyl chains. Furthermore, heteroatom-containing hydrocarbons were found as the significant components of the aromatic fractions: O⩽sub>1⩽/sub>, O⩽sub>2⩽/sub>, , N⩽sub>1⩽/sub>, , and S⩽sub>1⩽/sub>, class species with 10-28 DBEs (double bond equivalents) and 14-38 carbon numbers were identified by APPI FT-ICR MS. The heteroatom PAHs had similar DBEs and carbon number distribution as regular PAHs. [ABSTRACT FROM AUTHOR]