1. An Original Empirical Method for Simulating V L2,3 Edges: The Example of KVPO4F and KVOPO4 Cathode Materials
- Author
-
Alessandro Longo, Romain Wernert, Antonella Iadecola, Christoph J. Sahle, Lorenzo Stievano, Laurence Croguennec, Dany Carlier, Alessandro Mirone, European Synchroton Radiation Facility [Grenoble] (ESRF), Istituto per lo Studio dei Materiali Nanostrutturati, National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Université de Montpellier (UM), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Aix Marseille Université (AMU)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Nantes Université (Nantes Univ)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), European Synchrotron Radiation Facility for provision of synchrotron radiation facilities, ANR-19-CE05-0026,TROPIC,Vers des batteries innovantes K-ion(2019), and ANR-10-LABX-0076,STORE-EX,Laboratory of excellency for electrochemical energy storage(2010)
- Subjects
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,General Energy ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Physical and Theoretical Chemistry ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials - Abstract
International audience; Reversible chemical reactions are the most common mechanism storing electrochemical energy in M-ion batteries (M = Li, Na, K....). At the positive electrode, these transformations consist in the solid-state oxidation or reduction of transition metal ions going along with the reversible (de)intercalation of an alkali cation from the crystal structure. X-ray spectroscopies are among the most suitable tools to unveil and monitor these reactions. The interpretation of experimental spectra, however, is not trivial. This is particularly true in V-based positive electrodes since the variety of oxidation states of vanadium as well as its coordination and bonding geometries may lead to complex spectroscopic features that call for ab initio modeling to understand the spectra. Here we show not only that V L2,3-edge X-ray Raman spectra can effectively be modeled by a full ab initio approach but also that the empirically obtained Hamiltonian parameters can reproduce shape and intensity of the experimental spectra from a given coordination geometry. In a broader context, our study shows that inexpensive empirical calculations provide highly reliable information and help solve the electronic structure of transition metal oxides compounds, which governs the electrochemical behavior in M-ion batteries. The promising results shown here underline the efficiency of this strategy for X-ray spectroscopy data analysis, which can be generalized and extended to the wider family of vanadium phosphate-based polyanionic compounds. Such an approach can in principle be extended to any transition metal-based material.
- Published
- 2022
- Full Text
- View/download PDF