1. Oxidation as an Early Stage in the Multistep Thermal Decomposition of Uranium(IV) Oxalate into U3O8
- Author
-
Lénaïc Desfougeres, Loïc Favergeon, Maelig Ollivier, Renaud Podor, Nicolas Clavier, Philippe Martin, Éléonore Welcomme, Myrtille O.J.Y. Hunault, Julie Hennuyer, Département de recherche sur les procédés pour la mine et le recyclage du combustible (DMRC), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Département Procédés de Transformations des Solides et Instrumentation (PTSI-ENSMSE), Centre Sciences des Processus Industriels et Naturels (SPIN-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Laboratoire Georges Friedel (LGF-ENSMSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Etude de la Matière en Mode Environnemental (L2ME), Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Interfaces de Matériaux en Evolution (LIME), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010405 organic chemistry ,Chemistry ,Inorganic chemistry ,Thermal decomposition ,chemistry.chemical_element ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Actinide ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,Uranium ,010402 general chemistry ,01 natural sciences ,Oxalate ,0104 chemical sciences ,Inorganic Chemistry ,chemistry.chemical_compound ,Oxidation state ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,Stage (hydrology) ,Physical and Theoretical Chemistry ,[CHIM.RADIO]Chemical Sciences/Radiochemistry - Abstract
International audience; The thermal decomposition of actinides oxalates greatly depends on the oxidation state of the cation, the gas involved and the physical characteristics of the precursor. In the actinides series, uranium(IV) oxalate U(C 2 O 4) 2 .6H 2 O can be viewed as a peculiar case, as its sensibility towards oxidation leads to a specific series of reactions when heating under oxygen atmosphere. In order to clarify the disagreements existing in the literature, particularly concerning potential carbonate intermediates and the possible transitory existence of UO 3 , we show here an extended characterization of the different intermediates through a combination of X-Ray diffraction, vibrational spectroscopies and X-Ray absorption near edge spectroscopy. In this frame, uranium oxidation was found to occur at low temperature (200°C) concomitantly to the onset of oxalate groups decomposition, leading to an amorphous oxo-oxalato compound. Pursuing the thermal conversion up to 350°C led to complete oxidation of U(IV) into U(VI), then to the formation of amorphous UO 3 still bearing adsorbed carbonates. The first pure oxide formed during the thermal conversion was further identified to sub-stoichiometric UO 3- after heating at 550°C. Finally, U 3 O 8 was obtained as the final stable phase after heating above 660°C. The mechanism of thermal conversion of uranium(IV) oxalate into oxide under oxygen is then driven by a complex interplay between redox reactions and decomposition of the organic fractions. Such chemical reactions were also found to significantly modify the morphology of the powder through HT-ESEM observations : decomposition led the size of the aggregates to reduce by 20% while uranium oxidation clearly promoted growth within the agglomerates. 2
- Published
- 2020
- Full Text
- View/download PDF