1. Sulfonamides as Selective NaV1.7 Inhibitors: Optimizing Potency and Pharmacokinetics While Mitigating Metabolic Liabilities
- Author
-
Robert T. Fremeau, Isaac E. Marx, Emily A. Peterson, Charles Kreiman, Thomas Dineen, Hua Gao, Alessandro Boezio, Hakan Gunaydin, Min-Hwa Jasmine Lin, Steven Altmann, Elma Feric Bojic, Kristin Taborn, Robert S. Foti, Russell Graceffa, Daniel S. La, Liyue Huang, Matthew Weiss, Paul E. Rose, Angel Guzman-Perez, Beth D. Youngblood, Hongbing Huang, Violeta Yu, Dong Liu, Thomas Kornecook, Bryan D. Moyer, Howard Bregman, Hanh Nho Nguyen, Joseph Ligutti, Margaret Y. Chu-Moyer, Michael Jarosh, and Erin F. DiMauro
- Subjects
0301 basic medicine ,Pregnane X receptor ,CYP3A4 ,Chemistry ,Target engagement ,Pharmacology ,030226 pharmacology & pharmacy ,03 medical and health sciences ,030104 developmental biology ,0302 clinical medicine ,Pharmacokinetics ,Pharmacodynamics ,Drug Discovery ,Lipophilicity ,NAV1 ,Molecular Medicine ,Potency - Abstract
Several reports have recently emerged regarding the identification of heteroarylsulfonamides as NaV1.7 inhibitors that demonstrate high levels of selectivity over other NaV isoforms. The optimization of a series of internal NaV1.7 leads that address a number of metabolic liabilities including bioactivation, PXR activation, as well as CYP3A4 induction and inhibition led to the identification of potent and selective inhibitors that demonstrated favorable pharmacokinetic profiles and were devoid of the aforementioned liabilities. The key to achieving this within a series prone to transporter-mediated clearance was the identification of a small range of optimal cLogD values and the discovery of subtle PXR SAR that was not lipophilicity dependent. This enabled the identification of compound 20, which was advanced into a target engagement pharmacodynamic model where it exhibited robust reversal of histamine-induced scratching bouts in mice.
- Published
- 2017
- Full Text
- View/download PDF