1. Automatic Fault Mapping in Remote Optical Images and Topographic Data With Deep Learning
- Author
-
Stéphane Dominguez, Isabelle Manighetti, Jacques Malavieille, Yuliya Tarabalka, Frédérique Leclerc, Jean-Michel Gaucel, Nicolas Girard, Tiziano Giampetro, Antoine Mercier, L. Matteo, Martijn van den Ende, Onur Tasar, Géoazur (GEOAZUR 7329), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Luxcarta technology [Mouans-Sartoux] (LCT), Thales Alenia Space, Geometric Modeling of 3D Environments (TITANE), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Géosciences Montpellier, Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Université des Antilles (UA)-Centre National de la Recherche Scientifique (CNRS), Thales Alenia Space [Toulouse] (TAS), THALES [France], Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA), and ANR-17-CE31-0008,FAULTS_R_GEMS,Les propriétés des failles: une clé fondamentale pour modéliser la rupture sismique et ses effets(2017)
- Subjects
010504 meteorology & atmospheric sciences ,Computer science ,business.industry ,Deep learning ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Pattern recognition ,Complex network ,[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG] ,Fault (power engineering) ,01 natural sciences ,Convolutional neural network ,Field (computer science) ,Identification (information) ,Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) ,Fracture (geology) ,Artificial intelligence ,business ,ComputingMethodologies_COMPUTERGRAPHICS ,0105 earth and related environmental sciences ,TRACE (psycholinguistics) - Abstract
International audience; Faults form dense, complex multi‐scale networks generally featuring a master fault and myriads of smaller‐scale faults and fractures off its trace, often referred to as damage. Quantification of the architecture of these complex networks is critical to understanding fault and earthquake mechanics. Commonly, faults are mapped manually in the field or from optical images and topographic data through the recognition of the specific curvilinear traces they form at the ground surface. However, manual mapping is time‐consuming, which limits our capacity to produce complete representations and measurements of the fault networks. To overcome this problem, we have adopted a machine learning approach, namely a U‐Net Convolutional Neural Network, to automate the identification and mapping of fractures and faults in optical images and topographic data. Intentionally, we trained the CNN with a moderate amount of manually created fracture and fault maps of low resolution and basic quality, extracted from one type of optical images (standard camera photographs of the ground surface). Based on a number of performance tests, we select the best performing model, MRef, and demonstrate its capacity to predict fractures and faults accurately in image data of various types and resolutions (ground photographs, drone and satellite images and topographic data). MRef exhibits good generalization capacities, making it a viable tool for fast and accurate mapping of fracture and fault networks in image and topographic data. The MRef model can thus be used to analyze fault organization, geometry, and statistics at various scales, key information to understand fault and earthquake mechanics.
- Published
- 2021
- Full Text
- View/download PDF