1. Effect of Varying Nitrogen Flow Rates on the Optical Properties of Amorphous-SiCN Thin Films.
- Author
-
Rahman, Mohd Azam Abdul, Goh Boon Tong, Mahmood, Mohamad Rusop, Chiu Wee Siong, Haw Choon Yian, and Rahman, Saadah Abdul
- Subjects
SILICON carbide ,AMORPHOUS substances ,OPTICAL properties ,THIN films ,SUBSTRATES (Materials science) ,CHEMICAL precursors ,ULTRAVIOLET-visible spectroscopy - Abstract
Series of amorphous silicon carbon nitride (a-SiCN) films are synthesized using RF- PECVD technique on glass and silicon substrates from precursor gas of silane, methane and nitrogen. In this work, the change in nitrogen flow rate from 0 sccm to 50 sccm is a mean used to vary the elemental composition and bonding properties which lead to change in optical properties. The films thickness varies between 327 nm to 944 nm. The changes for the stated properties are discussed against the change in the stated nitrogen flow rate. The optical properties are investigated by means of UV-VIS spectroscopy in the wavelength range of 190 nm to 2500 nm. The transmittance of the films at ultraviolet wavelength is found to increases with increase in nitrogen flow rate. The index of refraction, n obtained for SiCN films from transmittance and reflectance measurements is lower compared to SiC films. The films optical band gap increases from 1.74 eV to 2.08 eV before it decreases to 1.89 eV as nitrogen flow rate increases from 0 to 50 sccm. The optical dispersion parameters were determined according to Wemple and Didomenico method. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF