Fujita, Y., Adachi, T., Fujita, H., Algora, A., Blank, Bertram, Csatlós, M., Deaven, J.M., Estevez-Aguado, E., Ganioğlu, E., Guess, C.J., Gulyás, J., Hatanaka, K., Hirota, K., Honma, M., Ishikawa, D., Krasznahorkay, A., Matsubara, H., Meharchand, R., Molina, F., Okamura, H., Ong, H.J., Otsuka, T., Perdikakis, G., Rubio, B., Scholl, C., Shimbara, Y., Stephenson, E.J., Susoy, G., Suzuki, T., Tamii, A., Thies, J.H., Zegers, R.G.T., Zenihiro, J., Noyaux exotiques (NEX), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), and Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
In order to study the Gamow-Teller (GT) transitions from the Tz=+2 nucleus 44Ca to the Tz=+1 nucleus 44Sc, where Tz is the z component of isospin T, we performed the (p,n)-type (3He,t) charge-exchange (CE) reaction at 140 MeV/nucleon and the scattering angles 0∘ and 2.5∘. An energy resolution of 28 keV, that was realized by applying matching techniques to the magnetic spectrometer system, allowed the study of fragmented states. The GT transition strengths, B(GT), were derived up to the excitation energy (Ex) of 13.7 MeV assuming the proportionality between cross sections and B(GT) values. The total sum of B(GT) values in discrete states was 3.7, which was 31% of the sum-rule-limit value of 12. Shell model calculations using the GXPF1J interaction could reproduce the gross features of the experimental B(GT) distribution, but not the fragmentation of the strength. By introducing the concepts of isospin, properties of isospin analogous transitions and states were investigated. (i) Assuming isospin symmetry, the Tz=+2→+1 and Tz=-2→-1 mirror GT transitions should have the same properties, where the latter can be studied in the β decay of 44Cr to 44V. First, we confirmed that the β-decay half-life T1/2 of 44Cr can be reproduced using the B(GT) distribution from the 44Ca(3He,t) measurement. Then, the 0∘, (3He,t) spectrum was modified to deduce the "β-decay spectrum" and it was compared with the delayed-proton spectrum from the 44Cr β decay. The two spectra were mostly in agreement for the GT excitations, but suppression of the proton decay was found for the T=2 isobaric analog state (IAS). (ii) Starting from the T=2 ground state of 44Ca, the (3He,t) can excite GT states (state populated by GT transitions) with T=1, 2, and 3. On the other hand, the 44Ca(p,p') reaction can excite spin-M1 states (states populated by spin-M1 transitions) with T=2 and 3 that are analogous to the T=2 and 3 GT states, respectively. By comparing the spectra from these two reactions, a T value of 2 is suggested for several GT states in the Ex=11.5-13.7 MeV region. (iii) It has been suggested that the T=2, Jπ=0+ double isobaric analog state (DIAS) at 9.338 MeV in the Tz=0 nucleus 44Ti forms an isospin-mixed doublet with a subsidiary 0+ state at 9.298 MeV. Since no corresponding state was found in the Tz=+1 nucleus 44Sc, we suggest T=0 for the subsidiary state.