1. Determination of β -decay ground state feeding of nuclei of importance for reactor applications
- Author
-
V. Vedia, Sami Rinta-Antila, Volker Sonnenschein, D. Jordan, T. Martinez, Muriel Fallot, V. Guadilla, W. Gelletly, Amanda Porta, A. A. Sonzogni, Dmitry Gorelov, L. M. Fraile, A. Montaner-Pizá, Ari Jokinen, L. Le Meur, José Antonio Briz, Juha Äystö, T. Shiba, A. Cucoanes, A.-A. Zakari-Issoufou, K. Rytkönen, Jukka Koponen, Heikki Penttilä, Iain Moore, Anu Kankainen, S. E. A. Orrigo, Enrique Nácher, Veli Kolhinen, Annika Voss, Ilkka Pohjalainen, Tommi Eronen, E. Valencia, Berta Rubio, Jani Hakala, M. Lebois, Juuso Reinikainen, J. N. Wilson, M. Reponen, M. Monserrate, E. Ganioglu, M. Estienne, Jorge Agramunt, J. L. Tain, Alejandro Algora, Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), European Commission, Generalitat Valenciana, Consejo Superior de Investigaciones Científicas (España), Science and Technology Facilities Council (UK), Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Institut de Physique Nucléaire d'Orsay (IPNO), and Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11) more...
- Subjects
Physics ,Work (thermodynamics) ,Fission products ,010308 nuclear & particles physics ,Nuclear structure ,FOS: Physical sciences ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Nuclear Structure ,7. Clean energy ,01 natural sciences ,Synthetic data ,Nuclear physics ,13. Climate action ,Robustness (computer science) ,0103 physical sciences ,Neutron ,High Energy Physics::Experiment ,Decay heat ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Ground state ,Nuclear Experiment - Abstract
12 pags., 6 figs., 3 tabs., In β-decay studies the determination of the decay probability to the ground state (g.s.) of the daughter nucleus often suffers from large systematic errors. The difficulty of the measurement is related to the absence of associated delayed γ -ray emission. In this work we revisit the 4π γ − β method proposed by Greenwood and collaborators in the 1990s, which has the potential to overcome some of the experimental difficulties. Our interest is driven by the need to determine accurately the β-intensity distributions of fission products that contribute significantly to the reactor decay heat and to the antineutrinos emitted by reactors. A number of such decays have large g.s. branches. The method is relevant for nuclear structure studies as well. Pertinent formulas are revised and extended to the special case of β-delayed neutron emitters, and the robustness of the method is demonstrated with synthetic data. We apply it to a number of measured decays that serve as test cases and discuss the features of the method. Finally, we obtain g.s. feeding intensities with reduced uncertainty for four relevant decays that will allow future improvements in antineutrino spectrum and decay heat calculations using the summation method., This work has been supported by the Spanish Ministerio de Economía y Competitividad under Grants No. FPA2011- 24553, No. AIC-A-2011-0696, No. FPA2014-52823-C2- 1-P, No. FPA2015-65035-P, No. FPI/BES-2014-068222, No. FPA2017-83946-C2-1-P, and No. RTI2018-098868-BI00 and the program Severo Ochoa (SEV-2014-0398); by the Spanish Ministerio de Educación under Grant No. FPU12/01527; by the Spanish Ministerio de Ciencia e Innovación under Grant No. PID2019-104714GB-C21; by the European Commission under CHANDA project funded under FP7-EURATOM-FISSION Grant No. 605203; the FP7/ENSAR Contract No. 262010; the SANDA project funded under H2020-EURATOM-1.1 Grant No. 847552; the Horizon 2020 research and innovation programme under Grant No. 771036 (ERC CoG MAIDEN); by the Generalitat Valenciana regional funds PROMETEO/2019/007/; and by the Junta para la Ampliacion de Estudios ´ Programme (CSIC JAE-Doc contract) co-financed by ESF. We acknowledge the support of the UK Science and Technology Facilities Council (STFC) Grant No. ST/P005314/1; of the Polish National Agency for Academic Exchange (NAWA) under Grant No. PPN/ULM/2019/1/00220; and of the National Science Center, Poland, under Contract No. 2019/35/D/ST2/02081. This work was also supported by the Academy of Finland under the Finnish Centre of Excellence Programme (Project No. 213503, Nuclear and Accelerator-Based Physics Research at JYFL). A.K. and T.E. acknowledge support from the Academy of Finland under Projects No. 275389 and No. 295207, respectively. This work has also been supported by the CNRS challenge NEEDS and the associated NACRE project, the CNRS/in2p3 PICS TAGS between Subatech and IFIC, and the CNRS/in2p3 Master projects Jyvaskyla and OPALE. more...
- Published
- 2020
- Full Text
- View/download PDF