1. Fourier domain gravitational waveforms for precessing eccentric binaries
- Author
-
Achamveedu Gopakumar, Antoine Klein, Philippe Jetzer, Lorenzo De Vittori, Y. Boetzel, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), University of Zurich, Institut d'Astrophysique de Paris ( IAP ), and Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS )
- Subjects
data analysis method ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Orbital plane ,Physics and Astronomy (miscellaneous) ,530 Physics ,General relativity ,[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph] ,binary ,FOS: Physical sciences ,alternative theories of gravity ,General Relativity and Quantum Cosmology (gr-qc) ,10192 Physics Institute ,01 natural sciences ,General Relativity and Quantum Cosmology ,[ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,symbols.namesake ,precession ,binary: spin ,numerical methods ,0103 physical sciences ,Waveform ,3101 Physics and Astronomy (miscellaneous) ,numerical calculations ,010303 astronomy & astrophysics ,orbit ,Physics ,010308 nuclear & particles physics ,Gravitational wave ,gravitational radiation ,Computational physics ,Fourier transform ,Amplitude ,gravitational radiation: emission ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,Precession ,symbols ,Astrophysics::Earth and Planetary Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Eccentricity (mathematics) ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We build two families of inspiral waveforms for precessing binaries on eccentric orbits in the Fourier domain. To achieve this, we use a small eccentricity expansion of the waveform amplitudes in order to separate the periastron precession timescale from the orbital timescale, and use a shifted uniform asymptotics transformation to compute the Fourier transform in the presence of spin-induced precession. We show that the resulting waveforms can yield a median faithfulness above 0.993 when compared to an equivalent time domain waveform with an initial eccentricity of $e_0 \approx 0.3$. We also show that when the spins are large, using a circular waveform can potentially lead to significant biases in the recovery of the parameters, even when the system has fully circularized, particularly when the accumulated number of cycles is large. This is an effect of the residual eccentricity present when the objects forming the binary have nonvanishing spin components in the orbital plane., 23 pages, 13 figures
- Published
- 2018
- Full Text
- View/download PDF