1. Can a Large Packing be Assembled from Smaller Ones?
- Author
-
Pierfrancesco Urbani, Francesco Zamponi, Daniel Hexner, Institut de Physique Théorique - UMR CNRS 3681 (IPHT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique de l'ENS (LPTENS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Systèmes Désordonnés et Applications, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7), Laboratoire de Physique Théorique de l'ENS [École Normale Supérieure] (LPTENS), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,Physics ,Structure (category theory) ,FOS: Physical sciences ,General Physics and Astronomy ,Function (mathematics) ,Condensed Matter - Soft Condensed Matter ,Atomic packing factor ,01 natural sciences ,Condensed Matter::Soft Condensed Matter ,0103 physical sciences ,Convergence (routing) ,Thermodynamic limit ,Soft Condensed Matter (cond-mat.soft) ,SPHERES ,Statistical physics ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,Critical dimension ,Critical exponent ,ComputingMilieux_MISCELLANEOUS - Abstract
We consider zero temperature packings of soft spheres, that undergo a jamming to unjamming transition as a function of packing fraction. We compare differences in the structure, as measured from the contact statistics, of a finite subsystem of a large packing to a whole packing with periodic boundaries of an equivalent size and pressure. We find that the fluctuations of the ensemble of whole packings are smaller than those of the ensemble of subsystems. Convergence of these two quantities appears to occur at very large systems, which are usually not attainable in numerical simulations. Finding differences between packings in two dimensions and three dimensions, we also consider four dimensions and mean-field models, and find that they show similar system size dependence. Mean-field critical exponents appear to be consistent with the 3d and 4d packings, suggesting they are above the upper critical dimension. We also find that the convergence as a function of system size to the thermodynamic limit is characterized by two different length scales. We argue that this is the result of the system being above the upper critical dimension.
- Published
- 2019