13 results on '"Casazza G"'
Search Results
2. Evaluation of exercise and training on muscle lipid metabolism
- Author
-
Bergman, B. C., primary, Butterfield, G. E., additional, Wolfel, E. E., additional, Casazza, G. A., additional, Lopaschuk, G. D., additional, and Brooks, G. A., additional
- Published
- 1999
- Full Text
- View/download PDF
3. Smoking increases conversion of lactate to glucose during submaximal exercise
- Author
-
Huie, M. J., primary, Casazza, G. A., additional, Horning, M. A., additional, and Brooks, G. A., additional
- Published
- 1996
- Full Text
- View/download PDF
4. Increased dependence on blood glucose in smokers during rest and sustained exercise
- Author
-
Colberg, S. R., primary, Casazza, G. A., additional, Horning, M. A., additional, and Brooks, G. A., additional
- Published
- 1994
- Full Text
- View/download PDF
5. Exercise training and diet-induced weight loss increase markers of hepatic bile acid (BA) synthesis and reduce serum total BA concentrations in obese women.
- Author
-
Mercer KE, Maurer A, Pack LM, Ono-Moore K, Spray BJ, Campbell C, Chandler CJ, Burnett D, Souza E, Casazza G, Keim N, Newman J, Hunter G, Fernadez J, Garvey WT, Harper ME, Hoppel C, Adams SH, and Thyfault J
- Subjects
- Adult, Bile Acids and Salts biosynthesis, Bile Acids and Salts blood, Biomarkers metabolism, Blood Glucose metabolism, Diet, Reducing, Exercise Therapy, Female, Humans, Insulin Resistance physiology, Liver metabolism, Middle Aged, Obesity blood, Obesity therapy, Up-Regulation, Bile Acids and Salts metabolism, Biomarkers blood, Exercise physiology, Obesity metabolism, Weight Loss physiology
- Abstract
Regular exercise has profound metabolic influence on the liver, but effects on bile acid (BA) metabolism are less well known. BAs are synthesized exclusively in the liver from cholesterol via the rate-limiting enzyme cholesterol 7 alpha-hydroxylase (CYP7A1). BAs contribute to the solubilization and absorption of lipids and serve as important signaling molecules, capable of systemic endocrine function. Circulating BAs increase with obesity and insulin resistance, but effects following exercise and diet-induced weight loss are unknown. To test if improvements in fitness and weight loss as a result of exercise training enhance BA metabolism, we measured serum concentrations of total BAs (conjugated and unconjugated primary and secondary BAs) in sedentary, obese, insulin-resistant women ( N = 11) before (PRE) and after (POST) a ∼14-wk exercise and diet-induced weight loss intervention. BAs were measured in serum collected after an overnight fast and during an oral glucose tolerance test (OGTT). Serum fibroblast growth factor 19 (FGF19; a regulator of BA synthesis) and 7-alpha-hydroxy-cholesten-3-one (C4, a marker of CYP7A1 enzymatic activity) also were measured. Using linear mixed-model analyses and the change in V̇O
2peak (mL/min/kg) as a covariate, we observed that exercise and weight loss intervention decreased total fasting serum BA by ∼30% ( P = 0.001) and increased fasting serum C4 concentrations by 55% ( P = 0.004). C4 was significantly correlated with serum total BAs only in the POST condition, whereas serum FGF19 was unchanged. These data indicate that a fitness and weight loss intervention modifies BA metabolism in obese women and suggest that improved metabolic health associates with higher postabsorptive (fasting) BA synthesis. Furthermore, pre- vs. postintervention patterns of serum C4 following an OGTT support the hypothesis that responsiveness of BA synthesis to postprandial inhibition is improved after exercise and weight loss. NEW & NOTEWORTHY Exercise and weight loss in previously sedentary, insulin-resistant women facilitates a significant improvement in insulin sensitivity and fitness that may be linked to changes in bile acid metabolism. Diet-induced weight loss plus exercise-induced increases in fitness promote greater postabsorptive bile acid synthesis while also sensitizing the bile acid metabolic system to feedback inhibition during a glucose challenge when glucose and insulin are elevated.- Published
- 2021
- Full Text
- View/download PDF
6. Recovery of (13)CO2 during rest and exercise after [1-(13)C]acetate, [2-(13)C]acetate, and NaH(13)CO3 infusions.
- Author
-
Trimmer JK, Casazza GA, Horning MA, and Brooks GA
- Subjects
- Acetates administration & dosage, Adult, Carbon Isotopes, Deuterium, Fasting, Glucose administration & dosage, Humans, Infusions, Intravenous, Male, Oxidation-Reduction, Postprandial Period, Respiration, Sodium Bicarbonate administration & dosage, Acetates metabolism, Carbon Dioxide metabolism, Exercise physiology, Glucose metabolism, Oxygen Consumption, Physical Endurance physiology, Physical Exertion physiology, Rest physiology, Sodium Bicarbonate metabolism
- Abstract
For estimating the oxidation rates (Rox) of glucose and other substrates by use of (13)C-labeled tracers, we obtained correction factors to account for label dilution in endogenous bicarbonate pools and TCA cycle exchange reactions. Fractional recoveries of (13)C label in respiratory gases were determined during 225 min of rest and 90 min of leg cycle ergometry at 45 and 65% peak oxygen uptake (VO(2 peak)) after continuous infusions of [1-(13)C]acetate, [2-(13)C]acetate, or NaH(13)CO(3). In parallel trials, [6,6-(2)H]glucose and [1-(13)C]glucose were given. Experiments were conducted after an overnight fast with exercise commencing 12 h after the last meal. During the transition from rest to exercise, CO(2) production increased (P < 0.05) in an intensity-dependent manner. Significant differences were observed in the fractional recoveries of (13)C label as (13)CO(2) at rest (NaH(13)CO(3), 77.5 +/- 2.8%; [1-(13)C]acetate, 49.8 +/- 2.4%; [2-(13)C]acetate, 26.1 +/- 1.4%). During exercise, fractional recoveries of (13)C label from [1-(13)C]acetate, [2-(13)C]acetate, and NaH(13)CO(3) were increased compared with rest. Magnitudes of label recoveries during both exercise intensities were tracer specific (NaH(13)CO(3), 93%; [1-(13)C]acetate, 80%; [2-(13)C]acetate, 65%). Use of an acetate-derived correction factor for estimating glucose oxidation resulted in Rox values in excess (P < 0.05) of glucose rate of disappearance during hard exercise. We conclude that, after an overnight fast: 1) recovery of (13)C label as (13)CO(2) from [(13)C]acetate is decreased compared with bicarbonate; 2) the position of (13)C acetate label affects carbon dilution estimations; 3) recovery of (13)C label increases in the transition from rest to exercise in an isotope-dependent manner; and 4) application of an acetate correction factor in glucose oxidation measurements results in oxidation rates in excess of glucose disappearance during exercise at 65% of VO(2 peak). Therefore, bicarbonate, not acetate, correction factors are advocated for estimating glucose oxidation from carbon tracers in exercising men.
- Published
- 2001
- Full Text
- View/download PDF
7. Autoregulation of glucose production in men with a glycerol load during rest and exercise.
- Author
-
Trimmer JK, Casazza GA, Horning MA, and Brooks GA
- Subjects
- Adult, Diet Records, Glucose metabolism, Glycerol metabolism, Humans, Kinetics, Male, Oxidation-Reduction, Pulmonary Gas Exchange, Rest physiology, Exercise physiology, Gluconeogenesis physiology, Glycerol pharmacology, Homeostasis
- Abstract
Related to hepatic autoregulation we evaluated hypotheses that 1) glucose production would be altered as a result of a glycerol load, 2) decreased glucose recycling rate (Rr) would result from increased glycerol uptake, and 3) the absolute rate of gluconeogenesis (GNG) from glycerol would be positively correlated to glycerol rate of disappearance (R(d)) during a glycerol load. For these purposes, glucose and glycerol kinetics were determined in eight men during rest and during 90 min of leg cycle ergometry at 45 and 65% of peak O2 consumption (.VO2 (peak)). Trials were conducted after an overnight fast, with exercise commencing 12 h after the last meal. Subjects received a continuous infusion of [6,6-(2)H(2)]glucose, [1-(13)C]glucose, and [1,1,2,3,3-(2)H(5)]glycerol without (CON) or with an additional 1,000 mg (rest: 20 mg/min; exercise: 40 mg/min) of [2-(13)C]- or unlabeled glycerol added to the infusate (GLY). Infusion of glycerol dampened glucose Rr, calculated as the difference between [6,6-(2)H(2)]- and [1-(13)C]glucose rates of appearance (R(a)), at rest [0.35 +/- 0.12 (CON) vs. 0.12 +/- 0.10 mg. kg(-1). min(-1) (GLY), P < 0.05] and during exercise at both intensities [45%: 0.63 +/- 0.14 (CON) vs. 0.04 +/- 0.12 (GLY); 65%: 0.73 +/- 0.14 (CON) vs. 0.04 +/- 0.17 mg. kg(-1). min(-1) (GLY), P < 0.05]. Glucose R(a) and oxidation were not affected by glycerol infusion at rest or during exercise. Throughout rest and both exercise intensities, glycerol R(d) was greater in GLY vs. CON conditions (rest: 0.30 +/- 0.04 vs. 0.58 +/- 0.04; 45%: 0.57 +/- 0.07 vs. 1.19 +/- 0.04; 65%: 0.73 +/- 0.06 vs. 1.27 +/- 0.05 mg. kg(-1). min(-1), CON vs. GLY, respectively). Differences in glycerol R(d) (DeltaR(d)) between protocols equaled the unlabeled glycerol infusion rate and correlated with plasma glycerol concentration (r = 0.97). We conclude that infusion of a glycerol load during rest and exercise at 45 and 65% of .VO2(peak) 1) does not affect glucose R(a) or R(d), 2) blocks glucose Rr, 3) increases whole body glycerol R(d) in a dose-dependent manner, and 4) results in gluconeogenic rates from glycerol equivalent to CON glucose recycling rates.
- Published
- 2001
- Full Text
- View/download PDF
8. Endurance training increases gluconeogenesis during rest and exercise in men.
- Author
-
Bergman BC, Horning MA, Casazza GA, Wolfel EE, Butterfield GE, and Brooks GA
- Subjects
- Adult, Arteries, Blood Glucose metabolism, Humans, Kinetics, Lactic Acid blood, Male, Oxygen Consumption, Exercise physiology, Gluconeogenesis, Physical Endurance, Rest
- Abstract
The hypothesis that endurance training increases gluconeogenesis (GNG) during rest and exercise was evaluated. We determined glucose turnover with [6,6-(2)H]glucose and lactate incorporation into glucose by use of [3-(13)C]lactate during 1 h of cycle ergometry at two intensities [45 and 65% peak O(2) consumption (VO(2 peak))] before and after training [65% pretraining VO(2 peak)], same absolute workload (ABT), and 65% posttraining VO(2 peak), same relative intensity (RLT). Nine males (178.1 +/- 2.5 cm, 81.8 +/- 3.3 kg, 27.4 +/- 2.0 yr) trained for 9 wk on a cycle ergometer 5 times/wk for 1 h at 75% VO(2 peak). The power output that elicited 66.0 +/- 1.1% of VO(2 peak) pretraining elicited 54.0 +/- 1.7% posttraining. Rest and exercise arterial glucose concentrations were similar before and after training, regardless of exercise intensity. Arterial lactate concentration during exercise was significantly greater than at rest before and after training. Compared with 65% pretraining, arterial lactate concentration decreased at ABT (4.75 +/- 0.4 mM, 65% pretraining; 2.78 +/- 0.3 mM, ABT) and RLT (3.76 +/- 0.46 mM) (P < 0.05). At rest after training, the percentage of glucose rate of appearance (R(a)) from GNG more than doubled (1.98 +/- 0.5% pretraining; 5.45 +/- 1.3% posttraining), as did the rate of GNG (0.11 +/- 0.03 mg x kg(-1) x min(-1) pretraining, 0.24 +/- 0.06 mg x kg(-1) x min(-1) posttraining). During exercise after training, %glucose R(a) from GNG increased significantly at ABT (2.3 +/- 0.8% at 65% pre- vs. 7.6 +/- 2.1% posttraining) and RLT (6.1 +/- 1.5%), whereas GNG increased almost threefold (P < 0.05) at ABT (0.24 +/- 0.08 mg x kg(-1) x min(-1) 65% pre-, and 0.71 +/- 0.18 mg x kg(-1) x min(-1) posttraining) and RLT (0.75 +/- 0.26 mg x kg(-1) x min(-1)). We conclude that endurance training increases gluconeogenesis twofold at rest and threefold during exercise at given absolute and relative exercise intensities.
- Published
- 2000
- Full Text
- View/download PDF
9. Active muscle and whole body lactate kinetics after endurance training in men.
- Author
-
Bergman BC, Wolfel EE, Butterfield GE, Lopaschuk GD, Casazza GA, Horning MA, and Brooks GA
- Subjects
- Adult, Algorithms, Body Composition physiology, Diet, Exercise Test, Hemodynamics physiology, Humans, Kinetics, Leg physiology, Male, Regional Blood Flow physiology, Lactic Acid metabolism, Muscle, Skeletal metabolism, Physical Endurance physiology, Physical Fitness physiology
- Abstract
We evaluated the hypotheses that endurance training decreases arterial lactate concentration ([lactate](a)) during continuous exercise by decreasing net lactate release () and appearance rates (R(a)) and increasing metabolic clearance rate (MCR). Measurements were made at two intensities before [45 and 65% peak O(2) consumption (VO(2 peak))] and after training [65% pretraining VO(2 peak), same absolute workload (ABT), and 65% posttraining VO(2 peak), same relative intensity (RLT)]. Nine men (27.4 +/- 2.0 yr) trained for 9 wk on a cycle ergometer, 5 times/wk at 75% VO(2 peak). Compared with the 65% VO(2 peak) pretraining condition (4.75 +/- 0.4 mM), [lactate](a) decreased at ABT (41%) and RLT (21%) (P < 0.05). decreased at ABT but not at RLT. Leg lactate uptake and oxidation were unchanged at ABT but increased at RLT. MCR was unchanged at ABT but increased at RLT. We conclude that 1) active skeletal muscle is not solely responsible for elevated [lactate](a); and 2) training increases leg lactate clearance, decreases whole body and leg lactate production at a given moderate-intensity power output, and increases both whole body and leg lactate clearance at a high relative power output.
- Published
- 1999
- Full Text
- View/download PDF
10. Endurance training increases fatty acid turnover, but not fat oxidation, in young men.
- Author
-
Friedlander AL, Casazza GA, Horning MA, Usaj A, and Brooks GA
- Subjects
- Adolescent, Adult, Body Composition physiology, Dietary Fats blood, Exercise physiology, Fatty Acids blood, Fatty Acids, Nonesterified blood, Humans, Kinetics, Male, Oxidation-Reduction, Rest physiology, Dietary Fats metabolism, Fatty Acids metabolism, Physical Endurance physiology, Physical Fitness physiology
- Abstract
We examined the effects of exercise intensity and a 10-wk cycle ergometer training program [5 days/wk, 1 h, 75% peak oxygen consumption (VO2 peak)] on plasma free fatty acid (FFA) flux, total fat oxidation, and whole body lipolysis in healthy male subjects (n = 10; age = 25.6 +/- 1.0 yr). Two pretraining trials (45 and 65% of VO2 peak) and two posttraining trials (same absolute workload, 65% of old VO2 peak; and same relative workload, 65% of new VO2 peak) were performed by using an infusion of [1-13C]palmitate and [1,1,2,3, 3-2H]glycerol. An additional nine subjects (age 25.4 +/- 0.8 yr) were treated similarly but were infused with [1,1,2,3,3-2H]glycerol and not [1-13C]palmitate. Subjects were studied postabsorptive for 90 min of rest and 1 h of cycling exercise. After training, subjects increased VO2 peak by 9.4 +/- 1.4%. Pretraining, plasma FFA kinetics were inversely related to exercise intensity with rates of appearance (Ra) and disappearance (Rd) being significantly higher at 45 than at 65% VO2 peak (Ra: 8.14 +/- 1.28 vs. 6.64 +/- 0.46, Rd: 8. 03 +/- 1.28 vs. 6.42 +/- 0.41 mol. kg-1. min-1) (P = 0.05). After training, when measured at the same absolute and relative intensities, FFA Ra increased to 8.84 +/- 1.1, 8.44 +/- 1.1 and Rd to 8.82 +/- 1.1, 8.35 +/- 1.1 mol. kg-1. min-1, respectively (P = 0.05). Total fat oxidation determined from respiratory exchange ratio was elevated during exercise compared with rest, but did not differ among the four conditions. Glycerol Ra was elevated during exercise compared with rest but did not demonstrate significant intensity or training effects during exercise. Thus, in young men, plasma FFA flux is increased during exercise after endurance training, but total fat oxidation and whole-body lipolysis are unaffected when measured at the same absolute or relative exercise intensities.
- Published
- 1999
- Full Text
- View/download PDF
11. Effects of exercise intensity and training on lipid metabolism in young women.
- Author
-
Friedlander AL, Casazza GA, Horning MA, Buddinger TF, and Brooks GA
- Subjects
- Adult, Blood Glucose metabolism, Carbon Isotopes, Deuterium, Fatty Acids, Nonesterified blood, Female, Glycerol administration & dosage, Glycerol metabolism, Heart Rate, Hematocrit, Humans, Infusions, Intravenous, Kinetics, Lipolysis, Palmitic Acid administration & dosage, Palmitic Acid metabolism, Physical Exertion physiology, Rest, Exercise physiology, Lipid Metabolism, Oxygen Consumption physiology, Physical Endurance physiology
- Abstract
We examined the effects of exercise intensity and training [12 wk, 5 days/wk, 1 h, 75% peak oxygen consumption (VO2 peak)] on lipolysis and plasma free fatty acid (FFA) flux in women (n = 8; 24.3 +/- 1.6 yr). Two pretraining trials (45 and 65% of VO2 peak) and two posttraining trials [same absolute workload (65% of old VO2 peak; ABT) and same relative workload (65% of new VO2 peak; RLT)] were performed using infusions of [1,1,2,3,3-2H]glycerol and [1-13C]palmitate. Pretraining rates of FFA appearance (Ra), disappearance (Rd), and oxidation (Rox p) were similar between the 65% (6.8 +/- 0.6, 6.2 +/- 0.7, 3.1 +/- 0.3 micromol. kg-1. min-1, respectively) and the 45% of VO2 peak trials. At ABT and RLT training increased FFA Ra to 8.4 +/- 1.0 and 9.7 +/- 1.1 micromol. kg-1. min-1, Rd to 8.3 +/- 1.0 and 9.5 +/- 1.1 micromol. kg-1. min-1, and Rox p to 4.8 +/- 0.4 and 6.7 +/- 0.7 micromol. kg-1. min-1, respectively (P = 0.05). Total FFA oxidation from respiratory exchange ratio was also elevated after training at ABT and RLT, with all of the increase attributed to plasma FFA sources. Pretraining, glycerol Ra was higher during exercise at 65 than 45% of VO2 peak (6. 9 +/- 0.9 vs. 4.7 +/- 0.6 micromol. kg-1. min-1) but was not changed by training. In young women 1) plasma FFA kinetics and oxidation are not linearly related to exercise intensity before training, 2) training increases FFA Ra, Rd, and Rox p whether measured at given absolute or relative exercise intensities, 3) whole body lipolysis (glycerol Ra) during exercise is not significantly impacted by training, and 4) training-induced increases in plasma FFA oxidation are the main contributor to elevated total FFA oxidation during exercise exertion after training.
- Published
- 1998
- Full Text
- View/download PDF
12. Training-induced alterations of carbohydrate metabolism in women: women respond differently from men.
- Author
-
Friedlander AL, Casazza GA, Horning MA, Huie MJ, Piacentini MF, Trimmer JK, and Brooks GA
- Subjects
- Adolescent, Adult, Blood Glucose metabolism, Body Composition physiology, Exercise physiology, Female, Hormones blood, Humans, Lactic Acid blood, Male, Menstruation physiology, Oxygen Consumption physiology, Sex Characteristics, Carbohydrate Metabolism, Physical Fitness physiology
- Abstract
We examined the hypothesis that glucose flux was directly related to relative exercise intensity both before and after a 12-wk cycle ergometer training program [5 days/wk, 1-h duration, 75% peak O2 consumption (VO2 peak)] in healthy female subjects (n = 17; age 23.8 +/- 2.0 yr). Two pretraining trials (45 and 65% of VO2 peak) and two posttraining trials [same absolute workload (65% of old VO2 peak) and same relative workload (65% of new VO2 peak)] were performed on nine subjects by using a primed-continuous infusion of [1-13C]- and [6,6-2H]glucose. Eight additional subjects were studied by using [6, 6-2H]glucose. Subjects were studied postabsorption for 90 min of rest and 1 h of cycling exercise. After training, subjects increased VO2 peak by 25.2 +/- 2.4%. Pretraining, the intensity effect on glucose kinetics was evident between 45 and 65% of VO2 peak with rates of appearance (Ra: 4.52 +/- 0.25 vs. 5.53 +/- 0.33 mg . kg-1 . min-1), disappearance (Rd: 4.46 +/- 0.25 vs. 5.54 +/- 0.33 mg . kg-1 . min-1), and oxidation (Rox: 2.45 +/- 0.16 vs. 4.35 +/- 0.26 mg . kg-1 . min-1) of glucose being significantly greater (P = 0.05) in the 65% than in the 45% trial. Training reduced Ra (4.7 +/- 0.30 mg . kg-1 . min-1), Rd (4.69 +/- 0.20 mg . kg-1 . min-1), and Rox (3.54 +/- 0.50 mg . kg-1 . min-1) at the same absolute workload (P = 0. 05). When subjects were tested at the same relative workload, Ra, Rd, and Rox were not significantly different after training. However, at both workloads after training, there was a significant decrease in total carbohydrate oxidation as determined by the respiratory exchange ratio. These results show the following in young women: 1) glucose use is directly related to exercise intensity; 2) training decreases glucose flux for a given power output; 3) when expressed as relative exercise intensity, training does not affect the magnitude of blood glucose flux during exercise; but 4) training does reduce total carbohydrate oxidation.
- Published
- 1998
- Full Text
- View/download PDF
13. Training-induced alterations of glucose flux in men.
- Author
-
Friedlander AL, Casazza GA, Horning MA, Huie MJ, and Brooks GA
- Subjects
- Adolescent, Adult, Blood Glucose metabolism, Body Composition, Catecholamines blood, Energy Metabolism physiology, Exercise Test, Humans, Kinetics, Male, Metabolic Clearance Rate physiology, Oxidation-Reduction, Physical Endurance physiology, Pulmonary Gas Exchange physiology, Glucose metabolism, Physical Fitness
- Abstract
We examined the hypothesis that glucose flux was directly related to relative exercise intensity both before and after a 10-wk cycle ergometer training program in 19 healthy male subjects. Two pretraining trials [45 and 65% of peak O2 consumption (VO2peak)] and two posttraining trials (same absolute and relative intensities as 65% pretraining) were performed for 90 min of rest and 1 h of cycling exercise. After training, subjects increased VO2peak by 9.4 +/- 1.4%. Pretraining, the intensity effect on glucose kinetics was evident with rates of appearance (R(a); 5.84 +/- 0.23 vs. 4.73 +/- 0.19 mg x kg(-1) x min(-1)), disappearance (R(d); 5.78 +/- 0.19 vs. 4.73 +/- 0.19 mg x kg(-1) x min(-1) x min(-1)), oxidation (R(ox); 5.36 +/- 0.15 vs. 3.41 +/- 0.23 mg x kg(-1) x min(-1)), and metabolic clearance (7.03 +/- 0.56 vs. 5.20 +/- 0.28 ml x kg(-1) x min(-1)) of glucose being significantly greater (P < or = 0.05) in the 65% than the 45% VO2peak trial. When R(d) was expressed as a percentage of total energy expended per minute (R(dE)), there was no difference between the 45 and 65% intensities. Training did reduce R(a) (4.63 +/- 0.25), R(d) (4.65 +/- 0.24), R(ox) (3.77 +/- 0.43), and R(dE) (15.30 +/- 0.40 to 12.85 +/- 0.81) when subjects were tested at the same absolute workload (P < or = 0.05). However, when they were tested at the same relative workload, R(a), R(d), and R(dE) were not different, although R(ox) was lower posttraining (5.36 +/- 0.15 vs. 4.41 +/- 0.42, P < or = 0.05). These results show 1) glucose use is directly related to exercise intensity; 2) training decreases glucose flux for a given power output; 3) when expressed as relative exercise intensity, training does not affect the magnitude of blood glucose use during exercise; 4) training alters the pathways of glucose disposal.
- Published
- 1997
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.