1. Exercise increases fat oxidation at rest unrelated to changes in energy balance or lipolysis.
- Author
-
Calles-Escandón J, Goran MI, O'Connell M, Nair KS, and Danforth E Jr
- Subjects
- Adult, Body Composition, Carbohydrate Metabolism, Diet, Energy Intake, Humans, Oxidation-Reduction, Energy Metabolism, Exercise physiology, Fatty Acids, Nonesterified metabolism, Lipolysis, Rest
- Abstract
The hypothesis that exercise increases fat oxidation at rest independently of changes in energy balance, body composition, and/or lipolysis was tested in 21 volunteers. After a period of energy balance, volunteers were randomly allocated to one of four groups: control, overfed (OF), overfed and exercised (OF-EX), and exercised (EX). OF and OF-EX were overfed 50% excess of energy balance calories; OF-EX and EX spent 50% excess of energy balance calories during daily exercise sessions. Exercise increased fat oxidation at rest independently of dietary intake (OF-EX = + 22 +/- 2.4, EX = + 23 +/- 1.5 mg/min) and reduced carbohydrate oxidation (OF-EX = - 49 +/- 6.2, EX = - 46 +/- 5.4 mg/min). Volunteers in the OF group had an increase in carbohydrate oxidation (85 +/- 5.9 mg/min) and a decline in fat oxidation (- 33 +/- 1.4 mg/min). Protein oxidation did not change in any group. These changes occurred without a direct relation with changes in lipolysis and persisted even when expressed as a percentage or as an absolute equivalent of resting metabolic rate in calories. Thus exercise, independent of changes in energy intake and body composition and not related to changes in lipolysis, increases fat oxidation at rest, which may explain the beneficial effects of exercise in weight loss programs.
- Published
- 1996
- Full Text
- View/download PDF