1. Studies on the Detection, Expression, Glycosylation, Dimerization, and Ligand Binding Properties of Mouse Siglec-E*
- Author
-
Andrea Verhagen, Ajit Varki, Shoib S. Siddiqui, Zahra Khedri, Daniel Kim, Stevan A. Springer, Lingquan Deng, Hai Yu, Weiping Jiang, Jie Zhou, Beibei Ding, Flavio Schwarz, Xi Chen, Yuko Naito-Matsui, and Nissi Varki
- Subjects
0301 basic medicine ,Glycosylation ,Neutrophils ,Glycobiology and Extracellular Matrices ,Medical and Health Sciences ,Biochemistry ,Monocytes ,Non-Receptor Type 6 ,chemistry.chemical_compound ,Mice ,Sialic Acid Binding Immunoglobulin-like Lectins ,Mice, Knockout ,dimerization ,Inbred Lew ,biology ,Protein Tyrosine Phosphatase, Non-Receptor Type 6 ,B-Lymphocyte ,Transfection ,Siglec-9 ,Biological Sciences ,respiratory system ,CD ,sialic acid ,Differentiation ,Phosphorylation ,Antibody ,Siglec-E ,Biochemistry & Molecular Biology ,medicine.drug_class ,Knockout ,1.1 Normal biological development and functioning ,Mutation, Missense ,Monoclonal antibody ,Antibodies ,03 medical and health sciences ,Underpinning research ,Antigens, CD ,medicine ,cell signaling ,Animals ,Humans ,Antigens ,Molecular Biology ,Innate immune system ,flow cytometry ,Inflammatory and immune system ,Macrophages ,SIGLEC ,Cell Biology ,Dendritic Cells ,Rats ,Antigens, Differentiation, B-Lymphocyte ,030104 developmental biology ,chemistry ,Amino Acid Substitution ,Gene Expression Regulation ,monoclonal antibody ,Mutagenesis ,Rats, Inbred Lew ,Mutation ,Chemical Sciences ,biology.protein ,Protein Tyrosine Phosphatase ,Missense ,Protein Multimerization - Abstract
CD33-related Siglecs are a family of proteins widely expressed on innate immune cells. Binding of sialylated glycans or other ligands triggers signals that inhibit or activate inflammation. Immunomodulation by Siglecs has been extensively studied, but relationships between structure and functions are poorly explored. Here we present new data relating to the structure and function of Siglec-E, the major CD33-related Siglec expressed on mouse neutrophils, monocytes, macrophages, and dendritic cells. We generated nine new rat monoclonal antibodies specific to mouse Siglec-E, with no cross-reactivity to Siglec-F. Although all antibodies detected Siglec-E on transfected human HEK-293T cells, only two reacted with mouse bone marrow neutrophils by flow cytometry and on spleen sections by immunohistochemistry. Moreover, whereas all antibodies recognized Siglec-E-Fc on immunoblots, binding was dependent on intact disulfide bonds and N-glycans, and only two antibodies recognized native Siglec-E within spleen lysates. Thus, we further investigated the impact of Siglec-E homodimerization. Homology-based structural modeling predicted a cysteine residue (Cys-298) in position to form a disulfide bridge between two Siglec-E polypeptides. Mutagenesis of Cys-298 confirmed its role in dimerization. In keeping with the high level of 9-O-acetylation found in mice, sialoglycan array studies indicate that this modification has complex effects on recognition by Siglec-E, in relationship to the underlying structures. However, we found no differences in phosphorylation or SHP-1 recruitment between dimeric and monomeric Siglec-E expressed on HEK293A cells. Phylogenomic analyses predicted that only some human and mouse Siglecs form disulfide-linked dimers. Notably, Siglec-9, the functionally equivalent human paralog of Siglec-E, occurs as a monomer.
- Published
- 2016