5 results on '"Oromendia C"'
Search Results
2. Association of urine mitochondrial DNA with clinical measures of COPD in the SPIROMICS cohort.
- Author
-
Zhang WZ, Rice MC, Hoffman KL, Oromendia C, Barjaktarevic IZ, Wells JM, Hastie AT, Labaki WW, Cooper CB, Comellas AP, Criner GJ, Krishnan JA, Paine R 3rd, Hansel NN, Bowler RP, Barr RG, Peters SP, Woodruff PG, Curtis JL, Han MK, Ballman KV, Martinez FJ, Choi AM, Nakahira K, Cloonan SM, and Choi ME
- Subjects
- Aged, Biomarkers urine, Cohort Studies, Female, Humans, Male, Middle Aged, Pulmonary Disease, Chronic Obstructive physiopathology, DNA, Mitochondrial urine, Pulmonary Disease, Chronic Obstructive urine
- Abstract
BACKGROUNDMitochondrial dysfunction, a proposed mechanism of chronic obstructive pulmonary disease (COPD) pathogenesis, is associated with the leakage of mitochondrial DNA (mtDNA), which may be detected extracellularly in various bodily fluids. Despite evidence for the increased prevalence of chronic kidney disease in COPD subjects and for mitochondrial dysfunction in the kidneys of murine COPD models, whether urine mtDNA (u-mtDNA) associates with measures of disease severity in COPD is unknown.METHODSCell-free u-mtDNA, defined as copy number of mitochondrially encoded NADH dehydrogenase-1 (MTND1) gene, was measured by quantitative PCR and normalized to urine creatinine in cell-free urine samples from participants in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) cohort. Urine albumin/creatinine ratios (UACR) were measured in the same samples. Associations between u-mtDNA, UACR, and clinical disease parameters - including FEV1 % predicted, clinical measures of exercise tolerance, respiratory symptom burden, and chest CT measures of lung structure - were examined.RESULTSU-mtDNA and UACR levels were measured in never smokers (n = 64), smokers without airflow obstruction (n = 109), participants with mild/moderate COPD (n = 142), and participants with severe COPD (n = 168). U-mtDNA was associated with increased respiratory symptom burden, especially among smokers without COPD. Significant sex differences in u-mtDNA levels were observed, with females having higher u-mtDNA levels across all study subgroups. U-mtDNA associated with worse spirometry and CT emphysema in males only and with worse respiratory symptoms in females only. Similar associations were not found with UACR.CONCLUSIONU-mtDNA levels may help to identify distinct clinical phenotypes and underlying pathobiological differences in males versus females with COPD.TRIAL REGISTRATIONThis study has been registered at ClinicalTrials.gov ( NCT01969344).FUNDINGUS NIH, National Heart, Lung and Blood Institute, supplemented by contributions made through the Foundation for the NIH and the COPD Foundation from AstraZeneca/MedImmune, Bayer, Bellerophon Therapeutics, Boehringer-Ingelheim Pharmaceuticals Inc., Chiesi Farmaceutici S.p.A., Forest Research Institute Inc., GlaxoSmithKline, Grifols Therapeutics Inc., Ikaria Inc., Novartis Pharmaceuticals Corporation, Nycomed GmbH, ProterixBio, Regeneron Pharmaceuticals Inc., Sanofi, Sunovion, Takeda Pharmaceutical Company, and Theravance Biopharma and Mylan.
- Published
- 2020
- Full Text
- View/download PDF
3. Circulating cell death biomarker TRAIL is associated with increased organ dysfunction in sepsis.
- Author
-
Schenck EJ, Ma KC, Price DR, Nicholson T, Oromendia C, Gentzler ER, Sanchez E, Baron RM, Fredenburgh LE, Huh JW, Siempos II, and Choi AM
- Subjects
- Adolescent, Adult, Aged, Cell Death, Critical Illness, Female, Hospital Mortality, Humans, Intensive Care Units, Male, Middle Aged, New York, Receptor-Interacting Protein Serine-Threonine Kinases metabolism, Sepsis mortality, Shock, Septic blood, Young Adult, Apoptosis, Biomarkers blood, Multiple Organ Failure blood, Sepsis blood, TNF-Related Apoptosis-Inducing Ligand blood
- Abstract
Background: In sepsis, there may be dysregulation in programed cell death pathways, typified by apoptosis and necroptosis. Programmed cell death pathways may contribute to variability in the immune response. TRAIL is a potent inducer of apoptosis. Receptor-interacting serine/threonine protein kinase-3 (RIPK3) is integral to the execution of necroptosis. We explored whether plasma TRAIL levels were associated with in-hospital mortality, organ dysfunction, and septic shock. We also explored the relationship between TRAIL and RIPK3., Methods: We performed an observational study of critically ill adults admitted to intensive care units at 3 academic medical centers across 2 continents, using 1 as derivation and the other 2 as validation cohorts. Levels of TRAIL were measured in the plasma of 570 subjects by ELISA., Results: In all cohorts, lower (<28.5 pg/ml) versus higher levels of TRAIL were associated with increased organ dysfunction (P ≤ 0.002) and septic shock (P ≤ 0.004). Lower TRAIL levels were associated with in-hospital mortality in 2 of 3 cohorts (Weill Cornell-Biobank of Critical Illness, P = 0.012; Brigham and Women's Hospital Registry of Critical Illness, P = 0.011; Asan Medical Center, P = 0.369). Lower TRAIL was also associated with increased RIPK3 (P ≤ 0.001)., Conclusion: Lower levels of TRAIL were associated with septic shock and organ dysfunction in 3 independent ICU cohorts. TRAIL was inversely associated with RIPK3 in all cohorts., Funding: NIH (R01-HL055330 and KL2-TR002385).
- Published
- 2019
- Full Text
- View/download PDF
4. A phase I trial of low-dose inhaled carbon monoxide in sepsis-induced ARDS.
- Author
-
Fredenburgh LE, Perrella MA, Barragan-Bradford D, Hess DR, Peters E, Welty-Wolf KE, Kraft BD, Harris RS, Maurer R, Nakahira K, Oromendia C, Davies JD, Higuera A, Schiffer KT, Englert JA, Dieffenbach PB, Berlin DA, Lagambina S, Bouthot M, Sullivan AI, Nuccio PF, Kone MT, Malik MJ, Porras MAP, Finkelsztein E, Winkler T, Hurwitz S, Serhan CN, Piantadosi CA, Baron RM, Thompson BT, and Choi AM
- Subjects
- Adult, Aged, Biomarkers blood, Blood Gas Analysis, Carboxyhemoglobin, DNA, Mitochondrial, Female, Humans, Male, Middle Aged, Administration, Inhalation, Carbon Monoxide administration & dosage, Respiratory Distress Syndrome drug therapy, Respiratory Therapy methods, Sepsis drug therapy
- Abstract
Background: Acute respiratory distress syndrome (ARDS) is a prevalent disease with significant mortality for which no effective pharmacologic therapy exists. Low-dose inhaled carbon monoxide (iCO) confers cytoprotection in preclinical models of sepsis and ARDS., Methods: We conducted a phase I dose escalation trial to assess feasibility and safety of low-dose iCO administration in patients with sepsis-induced ARDS. Twelve participants were randomized to iCO or placebo air 2:1 in two cohorts. Four subjects each were administered iCO (100 ppm in cohort 1 or 200 ppm in cohort 2) or placebo for 90 minutes for up to 5 consecutive days. Primary outcomes included the incidence of carboxyhemoglobin (COHb) level ≥10%, prespecified administration-associated adverse events (AEs), and severe adverse events (SAEs). Secondary endpoints included the accuracy of the Coburn-Forster-Kane (CFK) equation to predict COHb levels, biomarker levels, and clinical outcomes., Results: No participants exceeded a COHb level of 10%, and there were no administration-associated AEs or study-related SAEs. CO-treated participants had a significant increase in COHb (3.48% ± 0.7% [cohort 1]; 4.9% ± 0.28% [cohort 2]) compared with placebo-treated subjects (1.97% ± 0.39%). The CFK equation was highly accurate at predicting COHb levels, particularly in cohort 2 (R2 = 0.9205; P < 0.0001). Circulating mitochondrial DNA levels were reduced in iCO-treated participants compared with placebo-treated subjects., Conclusion: Precise administration of low-dose iCO is feasible, well-tolerated, and appears to be safe in patients with sepsis-induced ARDS. Excellent agreement between predicted and observed COHb should ensure that COHb levels remain in the target range during future efficacy trials., Trial Registration: ClinicalTrials.gov NCT02425579., Funding: NIH grants P01HL108801, KL2TR002385, K08HL130557, and K08GM102695.
- Published
- 2018
- Full Text
- View/download PDF
5. Circulating RIPK3 levels are associated with mortality and organ failure during critical illness.
- Author
-
Ma KC, Schenck EJ, Siempos II, Cloonan SM, Finkelsztein EJ, Pabon MA, Oromendia C, Ballman KV, Baron RM, Fredenburgh LE, Higuera A, Lee JY, Chung CR, Jeon K, Yang JH, Howrylak JA, Huh JW, Suh GY, and Choi AM
- Subjects
- Aged, Apoptosis, Female, Hospital Mortality, Humans, Intensive Care Units, Logistic Models, Male, Middle Aged, Multivariate Analysis, Necrosis, Odds Ratio, Republic of Korea, Severity of Illness Index, Survival Analysis, United States, Critical Illness mortality, Multiple Organ Failure blood, Multiple Organ Failure mortality, Receptor-Interacting Protein Serine-Threonine Kinases blood, Receptor-Interacting Protein Serine-Threonine Kinases metabolism
- Abstract
Background: Necroptosis is a form of programmed necrotic cell death that is rapidly emerging as an important pathophysiological pathway in numerous disease states. Necroptosis is dependent on receptor-interacting protein kinase 3 (RIPK3), a protein shown to play an important role in experimental models of critical illness. However, there is limited clinical evidence regarding the role of extracellular RIPK3 in human critical illness., Methods: Plasma RIPK3 levels were measured in 953 patients prospectively enrolled in 5 ongoing intensive care unit (ICU) cohorts in both the USA and Korea. RIPK3 concentrations among groups were compared using prospectively collected phenotypic and outcomes data., Results: In all 5 cohorts, extracellular RIPK3 levels in the plasma were higher in patients who died in the hospital compared with those who survived to discharge. In a combined analysis, increasing RIPK3 levels were associated with elevated odds of in-hospital mortality (odds ratio [OR] 1.7 for each log10-unit increase in RIPK3 level, P < 0.0001). When adjusted for baseline severity of illness, the OR for in-hospital mortality remained statistically significant (OR 1.33, P = 0.007). Higher RIPK3 levels were also associated with more severe organ failure., Conclusions: Our findings suggest that elevated levels of RIPK3 in the plasma of patients admitted to the ICU are associated with in-hospital mortality and organ failure., Funding: Supported by NIH grants P01 HL108801, R01 HL079904, R01 HL055330, R01 HL060234, K99 HL125899, and KL2TR000458-10. Supported by Samsung Medical Center grant SMX1161431.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.