1. Maternal erythrocyte ENT1–mediated AMPK activation counteracts placental hypoxia and supports fetal growth
- Author
-
Yangxi Zheng, Benjamin C. Brown, Jacob Couturier, Rodney E. Kellems, Changhan Chen, Yang Xia, Monica Longo, Angelo D'Alessandro, Anren Song, Ping Xu, Xiaoli Cai, Seisuke Sayama, Takayuki Iriyama, and Baha M. Sibai
- Subjects
0301 basic medicine ,Cell type ,Erythrocytes ,Placenta ,AMP-Activated Protein Kinases ,Equilibrative nucleoside transporter 1 ,Equilibrative Nucleoside Transporter 1 ,Fetal Development ,Mice ,03 medical and health sciences ,Fetus ,0302 clinical medicine ,Pregnancy ,Gene expression ,medicine ,Animals ,Hypoxia ,Bisphosphoglycerate mutase ,Mice, Knockout ,biology ,Chemistry ,AMPK ,Transporter ,General Medicine ,Adenosine ,Cell biology ,Enzyme Activation ,030104 developmental biology ,030220 oncology & carcinogenesis ,biology.protein ,Female ,Research Article ,medicine.drug - Abstract
Insufficient O(2) supply is frequently associated with fetal growth restriction (FGR), a leading cause of perinatal mortality and morbidity. Although the erythrocyte is the most abundant and only cell type to deliver O(2) in our body, its function and regulatory mechanism in FGR remain unknown. Here, we report that genetic ablation of mouse erythrocyte equilibrative nucleoside transporter 1 (eENT1) in dams, but not placentas or fetuses, results in FGR. Unbiased high-throughput metabolic profiling coupled with in vitro and in vivo flux analyses with isotopically labeled tracers led us to discover that maternal eENT1–dependent adenosine uptake is critical in activating AMPK by controlling the AMP/ATP ratio and its downstream target, bisphosphoglycerate mutase (BPGM); in turn, BPGM mediates 2,3-BPG production, which enhances O(2) delivery to maintain placental oxygenation. Mechanistically and functionally, we revealed that genetic ablation of maternal eENT1 increases placental HIF-1α; preferentially reduces placental large neutral aa transporter 1 (LAT1) expression, activity, and aa supply; and induces FGR. Translationally, we revealed that elevated HIF-1α directly reduces LAT1 gene expression in cultured human trophoblasts. We demonstrate the importance and molecular insight of maternal eENT1 in fetal growth and open up potentially new diagnostic and therapeutic possibilities for FGR.
- Published
- 2020
- Full Text
- View/download PDF