1. Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation
- Author
-
Shannon E. McGettigan, Prachi R. Patel, J. Joseph Melenhorst, Victoria Casado-Medrano, Regina M. Young, Anna Wing, Sonia Guedan, Tong Da, John Scholler, Simon F. Lacey, Carl H. June, Carolyn E. Shaw, Omkar U. Kawalekar, Mireia Uribe-Herranz, Avery D. Posey, Decheng Song, and Brian Keith
- Subjects
CD4-Positive T-Lymphocytes ,0301 basic medicine ,Lung Neoplasms ,T-Lymphocytes ,medicine.medical_treatment ,Antineoplastic Agents ,Adenocarcinoma ,CD8-Positive T-Lymphocytes ,Biology ,Inducible T-Cell Co-Stimulator Protein ,Cell membrane ,Mice ,03 medical and health sciences ,0302 clinical medicine ,CD28 Antigens ,Antigen ,In vivo ,Cell Line, Tumor ,medicine ,Animals ,Humans ,Neoplasm Metastasis ,Receptors, Chimeric Antigen ,Effector ,Cell Membrane ,CD28 ,General Medicine ,Immunotherapy ,Xenograft Model Antitumor Assays ,Cell biology ,Pancreatic Neoplasms ,4-1BB Ligand ,030104 developmental biology ,medicine.anatomical_structure ,030220 oncology & carcinogenesis ,CD8 ,Intracellular ,Signal Transduction ,Research Article - Abstract
Successful tumor eradication by chimeric antigen receptor–expressing (CAR-expressing) T lymphocytes depends on CAR T cell persistence and effector function. We hypothesized that CD4+ and CD8+ T cells may exhibit distinct persistence and effector phenotypes, depending on the identity of specific intracellular signaling domains (ICDs) used to generate the CAR. First, we demonstrate that the ICOS ICD dramatically enhanced the in vivo persistence of CAR-expressing CD4+ T cells that, in turn, increased the persistence of CD8+ T cells expressing either CD28- or 4-1BB–based CARs. These data indicate that persistence of CD8+ T cells was highly dependent on a helper effect provided by the ICD used to redirect CD4+ T cells. Second, we discovered that combining ICOS and 4-1BB ICDs in a third-generation CAR displayed superior antitumor effects and increased persistence in vivo. Interestingly, we found that the membrane-proximal ICD displayed a dominant effect over the distal domain in third-generation CARs. The optimal antitumor and persistence benefits observed in third-generation ICOSBBz CAR T cells required the ICOS ICD to be positioned proximal to the cell membrane and linked to the ICOS transmembrane domain. Thus, CARs with ICOS and 4-1BB ICD demonstrate increased efficacy in solid tumor models over our current 4-1BB–based CAR and are promising therapeutics for clinical testing.
- Published
- 2018
- Full Text
- View/download PDF