1. Xylella fastidiosa modulates exopolysaccharide polymer length and the dynamics of biofilm development with a β-1,4-endoglucanase
- Author
-
Claudia Castro, Ikenna Ndukwe, Christian Heiss, Ian Black, Brian M. Ingel, Matthew Guevara, Yuling Sun, Parastoo Azadi, Qiang Sun, and M. Caroline Roper
- Subjects
biofilms ,exopolysaccharide ,grapevine ,plant pathogens ,Microbiology ,QR1-502 - Abstract
ABSTRACT Xylella fastidiosa is a Gram-negative bacterium that causes disease in many economically important crops. It colonizes the plant host xylem and the mouthparts of its insect vectors where it produces exopolysaccharide (EPS) and forms robust biofilms. Typically, the ability to form a biofilm enhances virulence, but X. fastidiosa does not fit neatly into that paradigm. Instead, X. fastidiosa enters into biofilms to attenuate its movement in the xylem, which, in turn, slows disease progression. In most of its over 600 known plant hosts, X. fastidiosa behaves as a benign commensal, but in some hosts like Vitis vinifera grapevines, it acts as a pathogen. Its ability to attenuate its own virulence in susceptible hosts may be a remnant of its commensal lifestyle in other hosts. Here, we demonstrate that X. fastidiosa utilizes a β-1,4 endoglucanase to cleave its self-produced β-1,4-glucan exopolysaccharide polymer to process it from a higher molecular weight to a lower molecular weight polymer. This processing mediates surface adherence of the cells and ultimately governs overall biofilm architecture, indicating enzymatic pruning of the EPS plays a key role in biofilm-mediated attenuation of X. fastidiosa in planta and, thus, is a key vestige that links its commensal behaviors to its parasitic behaviors in specific hosts. IMPORTANCE It is well established that exopolysaccharide (EPS) is an integral structural component of bacterial biofilms necessary for assembly and maintenance of the three-dimensional architecture of the biofilm. However, the process and role of EPS turnover within a developing biofilm is not fully understood. Here, we demonstrated that Xylella fastidiosa uses a self-produced endoglucanase to enzymatically process its own EPS to modulate EPS polymer length. This enzymatic processing of EPS dictates the early stages of X. fastidiosa’s biofilm development, which, in turn, affects its behavior in planta. A deletion mutant that cannot produce the endoglucanase was hypervirulent, thereby linking enzymatic processing of EPS to attenuation of virulence in symptomatic hosts, which may be a vestige of X. fastidiosa’s commensal behavior in many of its other non-symptomatic hosts.
- Published
- 2023
- Full Text
- View/download PDF