4 results on '"J. Bartoš"'
Search Results
2. Towards spruce-type photosystem II: consequences of the loss of light-harvesting proteins LHCB3 and LHCB6 in Arabidopsis.
- Author
-
Ilíková I, Ilík P, Opatíková M, Arshad R, Nosek L, Karlický V, Kučerová Z, Roudnický P, Pospíšil P, Lazár D, Bartoš J, and Kouřil R
- Subjects
- Arabidopsis metabolism, Arabidopsis Proteins metabolism, Chlorophyll Binding Proteins metabolism, Photosystem II Protein Complex metabolism, Picea metabolism, Arabidopsis genetics, Arabidopsis Proteins genetics, Chlorophyll Binding Proteins genetics, Photosystem II Protein Complex genetics
- Abstract
The largest stable photosystem II (PSII) supercomplex in land plants (C2S2M2) consists of a core complex dimer (C2), two strongly (S2) and two moderately (M2) bound light-harvesting protein (LHCB) trimers attached to C2 via monomeric antenna proteins LHCB4-6. Recently, we have shown that LHCB3 and LHCB6, presumably essential for land plants, are missing in Norway spruce (Picea abies), which results in a unique structure of its C2S2M2 supercomplex. Here, we performed structure-function characterization of PSII supercomplexes in Arabidopsis (Arabidopsis thaliana) mutants lhcb3, lhcb6, and lhcb3 lhcb6 to examine the possibility of the formation of the "spruce-type" PSII supercomplex in angiosperms. Unlike in spruce, in Arabidopsis both LHCB3 and LHCB6 are necessary for stable binding of the M trimer to PSII core. The "spruce-type" PSII supercomplex was observed with low abundance only in the lhcb3 plants and its formation did not require the presence of LHCB4.3, the only LHCB4-type protein in spruce. Electron microscopy analysis of grana membranes revealed that the majority of PSII in lhcb6 and namely in lhcb3 lhcb6 mutants were arranged into C2S2 semi-crystalline arrays, some of which appeared to structurally restrict plastoquinone diffusion. Mutants without LHCB6 were characterized by fast induction of non-photochemical quenching and, on the contrary to the previous lhcb6 study, by only transient slowdown of electron transport between PSII and PSI. We hypothesize that these functional changes, associated with the arrangement of PSII into C2S2 arrays in thylakoids, may be important for the photoprotection of both PSI and PSII upon abrupt high-light exposure., (© The Author(s) 2021. Published by Oxford University Press on behalf of American Society of Plant Biologists.)
- Published
- 2021
- Full Text
- View/download PDF
3. The Coiled-Coil NLR Rph1 , Confers Leaf Rust Resistance in Barley Cultivar Sudan.
- Author
-
Dracatos PM, Bartoš J, Elmansour H, Singh D, Karafiátová M, Zhang P, Steuernagel B, Svačina R, Cobbin JCA, Clark B, Hoxha S, Khatkar MS, Doležel J, Wulff BB, and Park RF
- Subjects
- Chromosome Mapping, Genes, Plant, Plant Proteins physiology, Sequence Analysis, DNA, Hordeum physiology, Host-Pathogen Interactions, NLR Proteins physiology
- Abstract
Unraveling and exploiting mechanisms of disease resistance in cereal crops is currently limited by their large repeat-rich genomes and the lack of genetic recombination or cultivar (cv)-specific sequence information. We cloned the first leaf rust resistance gene Rph1 ( Rph1 a ) from cultivated barley ( Hordeum vulgare ) using "MutChromSeq," a recently developed molecular genomics tool for the rapid cloning of genes in plants. Marker-trait association in the CI 9214/Stirling doubled haploid population mapped Rph1 to the short arm of chromosome 2H in a physical region of 1.3 megabases relative to the barley cv Morex reference assembly. A sodium azide mutant population in cv Sudan was generated and 10 mutants were confirmed by progeny-testing. Flow-sorted 2H chromosomes from Sudan (wild type) and six of the mutants were sequenced and compared to identify candidate genes for the Rph1 locus. MutChromSeq identified a single gene candidate encoding a coiled-coil nucleotide binding site Leucine-rich repeat (NLR) receptor protein that was altered in three different mutants. Further Sanger sequencing confirmed all three mutations and identified an additional two independent mutations within the same candidate gene. Phylogenetic analysis determined that Rph1 clustered separately from all previously cloned NLRs from the Triticeae and displayed highest sequence similarity (89%) with a homolog of the Arabidopsis ( Arabidopsis thaliana ) disease resistance protein 1 protein in Triticum urartu In this study we determined the molecular basis for Rph1 -mediated resistance in cultivated barley enabling varietal improvement through diagnostic marker design, gene editing, and gene stacking technologies., (© 2019 American Society of Plant Biologists. All Rights Reserved.)
- Published
- 2019
- Full Text
- View/download PDF
4. Flow sorting and sequencing meadow fescue chromosome 4F.
- Author
-
Kopecký D, Martis M, Číhalíková J, Hřibová E, Vrána J, Bartoš J, Kopecká J, Cattonaro F, Stočes Š, Novák P, Neumann P, Macas J, Šimková H, Studer B, Asp T, Baird JH, Navrátil P, Karafiátová M, Kubaláková M, Šafář J, Mayer K, and Doležel J
- Subjects
- Blotting, Southern, Chromosome Mapping, Gene Order, Genome, Plant genetics, Hordeum genetics, In Situ Hybridization, Fluorescence, Karyotyping methods, Molecular Sequence Data, Oryza, Reproducibility of Results, Sorghum genetics, Synteny, Chromosomes, Plant genetics, Festuca genetics, Genomics methods, Sequence Analysis, DNA methods
- Abstract
The analysis of large genomes is hampered by a high proportion of repetitive DNA, which makes the assembly of short sequence reads difficult. This is also the case in meadow fescue (Festuca pratensis), which is known for good abiotic stress resistance and has been used in intergeneric hybridization with ryegrasses (Lolium spp.) to produce Festulolium cultivars. In this work, we describe a new approach to analyze the large genome of meadow fescue, which involves the reduction of sample complexity without compromising information content. This is achieved by dissecting the genome to smaller parts: individual chromosomes and groups of chromosomes. As the first step, we flow sorted chromosome 4F and sequenced it by Illumina with approximately 50× coverage. This provided, to our knowledge, the first insight into the composition of the fescue genome, enabled the construction of the virtual gene order of the chromosome, and facilitated detailed comparative analysis with the sequenced genomes of rice (Oryza sativa), Brachypodium distachyon, sorghum (Sorghum bicolor), and barley (Hordeum vulgare). Using GenomeZipper, we were able to confirm the collinearity of chromosome 4F with barley chromosome 4H and the long arm of chromosome 5H. Several new tandem repeats were identified and physically mapped using fluorescence in situ hybridization. They were found as robust cytogenetic markers for karyotyping of meadow fescue and ryegrass species and their hybrids. The ability to purify chromosome 4F opens the way for more efficient analysis of genomic loci on this chromosome underlying important traits, including freezing tolerance. Our results confirm that next-generation sequencing of flow-sorted chromosomes enables an overview of chromosome structure and evolution at a resolution never achieved before.
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.