1. The Sensitivity of Risk-Informed Reactor Structural Integrity Analysis Results to Various Interpretations of Warm Pre-Stress
- Author
-
Terry L. Dickson and Mark T. EricksonKirk
- Subjects
Engineering ,Fracture toughness ,business.industry ,Probabilistic logic ,Mode (statistics) ,Fracture (geology) ,Conditional probability ,Structural integrity ,Fracture mechanics ,Structural engineering ,Sensitivity (control systems) ,business - Abstract
Warm pre-stress, or WPS, is a phenomenon by which the apparent fracture toughness of ferritic steel can be elevated in the fracture mode transition if crack is first “pre-stressed” at an elevated temperature. Taking proper account of WPS is important to the accurate modeling of the postulated accident scenarios that, collectively, are referred to as pressurized thermal shock, and to the accurate modeling of routine cool-down transients. For both accident and routine cool-downs the transients begin at the reactor operating temperature (approximately 290°C for pressurized water reactors in the United States) and proceed to colder temperatures as time advances. The probabilistic fracture mechanics code FAVOR, which is being used by the NRC to provide the technical basis for risk-informed revisions of 10 CFR 50.61 and 10 CFR 50 Appendix G, adopts a model of WPS as part of its fracture driving force module. In this paper we assess the conservatism inherent to the FAVOR WPS model relative to a best-estimate WPS model constructed using data recently produced by the European Commission “SMILE” project and published by Moinereau and colleagues. Assessments of the conservatisms inherent to the so-called “conservative principle” WPS model, and also to a classic LEFM model that does not credit WPS are also made. The data presented herein demonstrate that, for an integrated analysis of PTS risk, the FAVOR and conservative principle WPS models both over-estimate the vessel failure risk by a factor of between 2 and 3× relative to the best estimate model. Our examination of the effect of WPS models on the predictions of individual transients reveals that for the severe transients that dominate risk there is little difference (usually less than 4×) between the conditional probabilities of crack initiation and of through wall cracking predicted by the different WPS models. There are considerable differences in the predictions of the various WPS and non-WPS models for low severity transients, however, the contribution of these transients to the total risk of vessel failure is small.Copyright © 2009 by ASME
- Published
- 2009
- Full Text
- View/download PDF