1. Identification of network-based biomarkers of cardioembolic stroke using a systems biology approach with time series data.
- Author
-
Yung-Hao Wong, Chia-Chou Wu, Hsien-Yong Lai, Bo-Ren Jheng, Hsing-Yu Weng, Tzu-Hao Chang, and Bor-Sen Chen
- Subjects
- *
STROKE prognosis , *TIME series analysis , *BIOMARKERS , *PROTEIN-protein interactions , *ETIOLOGY of diseases - Abstract
Background: Molecular signaling of angiogenesis begins within hours after initiation of a stroke and the following regulation of endothelial integrity mediated by growth factor receptors and vascular growth factors. Recent studies further provided insights into the coordinated patterns of post-stroke gene expressions and the relationships between neurodegenerative diseases and neural function recovery processes after a stroke. Results: Differential protein-protein interaction networks (PPINs) were constructed at 3 post-stroke time points, and proteins with a significant stroke relevance value (SRV) were discovered. Genes, including UBC, CUL3, APP, NEDD8, JUP, and SIRT7, showed high associations with time after a stroke, and Ingenuity Pathway Analysis results showed that these post-stroke time series-associated genes were related to molecular and cellular functions of cell death, cell survival, the cell cycle, cellular development, cellular movement, and cell-to-cell signaling and interactions. These biomarkers may be helpful for the early detection, diagnosis, and prognosis of ischemic stroke. Conclusions: This is our first attempt to use our theory of a systems biology framework on strokes. We focused on 3 key post-stroke time points. We identified the network and corresponding network biomarkers for the 3 time points, further studies are needed to experimentally confirm the findings and compare them with the causes of ischemic stroke. Our findings showed that stroke-associated biomarker genes at different time points were significantly involved in cell cycle processing, including G2-M, G1-S and meiosis, which contributes to the current understanding of the etiology of stroke. We hope this work helps scientists reveal more hidden cellular mechanisms of stroke etiology and repair processes. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF