1. Multicenter derivation and validation of an early warning score for acute respiratory failure or death in the hospital
- Author
-
Ognjen Gajic, Michelle N. Gong, Paul J. Novotny, Jeff A. Sloan, Parsa Mirhaji, Yiyuan Wu, Mikhail A. Dziadzko, and Vitaly Herasevich
- Subjects
Adult ,Male ,medicine.medical_specialty ,medicine.medical_treatment ,Critical Care and Intensive Care Medicine ,Acute respiratory failure ,Decision Support Techniques ,Cohort Studies ,03 medical and health sciences ,0302 clinical medicine ,Medicine ,Intubation ,Electronic health records ,Humans ,030212 general & internal medicine ,Hospital Mortality ,Prospective Studies ,Early warning scores ,Aged ,Retrospective Studies ,Mechanical ventilation ,Receiver operating characteristic ,business.industry ,Research ,lcsh:Medical emergencies. Critical care. Intensive care. First aid ,030208 emergency & critical care medicine ,lcsh:RC86-88.9 ,Middle Aged ,Early warning score ,Survival Analysis ,3. Good health ,Mews ,Early Diagnosis ,Respiratory failure ,ROC Curve ,Research Design ,Area Under Curve ,Emergency medicine ,Observational study ,Female ,False positive rate ,business ,Prediction ,Respiratory Insufficiency ,Random forest - Abstract
Background Acute respiratory failure occurs frequently in hospitalized patients and often starts before ICU admission. A risk stratification tool to predict mortality and risk for mechanical ventilation (MV) may allow for earlier evaluation and intervention. We developed and validated an automated electronic health record (EHR)-based model—Accurate Prediction of Prolonged Ventilation (APPROVE)—to identify patients at risk of death or respiratory failure requiring >= 48 h of MV. Methods This was an observational study of adults admitted to four hospitals in 2013 or a fifth hospital in 2017. Clinical data were extracted from the EHRs. The 2013 patients were randomly split 50:50 into a derivation/validation cohort. The qualifying event was death or intubation leading to MV >= 48 h. Random forest method was used in model derivation. APPROVE was calculated retrospectively whenever data were available in 2013, and prospectively every 4 h after hospital admission in 2017. The Modified Early Warning Score (MEWS) and National Early Warning Score (NEWS) were calculated at the same times as APPROVE. Clinicians were not alerted except for APPROVE in 2017cohort. Results There were 68,775 admissions in 2013 and 2258 in 2017. APPROVE had an area under the receiver operator curve of 0.87 (95% CI 0.85–0.88) in 2013 and 0.90 (95% CI 0.84–0.95) in 2017, which is significantly better than the MEWS and NEWS in 2013 but similar to the MEWS and NEWS in 2017. At a threshold of > 0.25, APPROVE had similar sensitivity and positive predictive value (PPV) (sensitivity 63% and PPV 21% in 2013 vs 64% and 16%, respectively, in 2017). Compared to APPROVE in 2013, at a threshold to achieve comparable PPV (19% at MEWS > 4 and 22% at NEWS > 6), the MEWS and NEWS had lower sensitivity (16% for MEWS and NEWS). Similarly in 2017, at a comparable sensitivity threshold (64% for APPROVE > 0.25 and 67% for MEWS and NEWS > 4), more patients who triggered an alert developed the event with APPROVE (PPV 16%) while achieving a lower false positive rate (FPR 5%) compared to the MEWS (PPV 7%, FPR 14%) and NEWS (PPV 4%, FPR 25%). Conclusions An automated EHR model to identify patients at high risk of MV or death was validated retrospectively and prospectively, and was determined to be feasible for real-time risk identification. Trial registration ClinicalTrials.gov, NCT02488174. Registered on 18 March 2015. Electronic supplementary material The online version of this article (10.1186/s13054-018-2194-7) contains supplementary material, which is available to authorized users.
- Published
- 2018