1. Distinct sex-specific DNA methylation differences in Alzheimer's disease.
- Author
-
C Silva T, Zhang W, Young JI, Gomez L, Schmidt MA, Varma A, Chen XS, Martin ER, and Wang L
- Subjects
- CpG Islands, Female, Humans, Male, Sex Characteristics, Alzheimer Disease genetics, DNA Methylation
- Abstract
Background: Sex is increasingly recognized as a significant factor contributing to the biological and clinical heterogeneity in AD. There is also growing evidence for the prominent role of DNA methylation (DNAm) in Alzheimer's disease (AD)., Methods: We studied sex-specific DNA methylation differences in the blood samples of AD subjects compared to cognitively normal subjects, by performing sex-specific meta-analyses of two large blood-based epigenome-wide association studies (ADNI and AIBL), which included DNA methylation data for a total of 1284 whole blood samples (632 females and 652 males). Within each dataset, we used two complementary analytical strategies, a sex-stratified analysis that examined methylation to AD associations in male and female samples separately, and a methylation-by-sex interaction analysis that compared the magnitude of these associations between different sexes. After adjusting for age, estimated immune cell type proportions, batch effects, and correcting for inflation, the inverse-variance fixed-effects meta-analysis model was used to identify the most consistent DNAm differences across datasets. In addition, we also evaluated the performance of the sex-specific methylation-based risk prediction models for AD diagnosis using an independent external dataset., Results: In the sex-stratified analysis, we identified 2 CpGs, mapped to the PRRC2A and RPS8 genes, significantly associated with AD in females at a 5% false discovery rate, and an additional 25 significant CpGs (21 in females, 4 in males) at P-value < 1×10
-5 . In methylation-by-sex interaction analysis, we identified 5 significant CpGs at P-value < 10-5 . Out-of-sample validations using the AddNeuroMed dataset showed in females, the best logistic prediction model included age, estimated immune cell-type proportions, and methylation risk scores (MRS) computed from 9 of the 23 CpGs identified in AD vs. CN analysis that are also available in AddNeuroMed dataset (AUC = 0.74, 95% CI: 0.65-0.83). In males, the best logistic prediction model included only age and MRS computed from 2 of the 5 CpGs identified in methylation-by-sex interaction analysis that are also available in the AddNeuroMed dataset (AUC = 0.70, 95% CI: 0.56-0.82)., Conclusions: Overall, our results show that the DNA methylation differences in AD are largely distinct between males and females. Our best-performing sex-specific methylation-based prediction model in females performed better than that for males and additionally included estimated cell-type proportions. The significant discriminatory classification of AD samples with our methylation-based prediction models demonstrates that sex-specific DNA methylation could be a predictive biomarker for AD. As sex is a strong factor underlying phenotypic variability in AD, the results of our study are particularly relevant for a better understanding of the epigenetic architecture that underlie AD and for promoting precision medicine in AD., (© 2022. The Author(s).)- Published
- 2022
- Full Text
- View/download PDF