1. foxr1 is a novel maternal-effect gene in fish that regulates embryonic cell growth via p21 and rictor
- Author
-
Cheung, Caroline, Patinote, Amélie, Guiguen, Yann, and Bobe, Julien
- Subjects
reproduction ,poisson ,danio rerio ,cyprinidae ,gène à effet maternel ,poisson zèbre ,division cellulaire ,croissance cellulaire ,facteur de transcription ,vertébré ,foxr1 ,maternal-effect genes ,CRISPR-cas9 ,p21 ,rictor ,rictor, cell growth and survival ,expression des gènes - Abstract
The family of forkhead box (Fox) transcription factors regulate gonadogenesis and embryogenesis, but the role of foxr1/foxn5 in reproduction is unknown. Evolution of foxr1 in vertebrates was examined and the gene found to exist in most vertebrates, including mammals, ray-finned fish, amphibians, and sauropsids. By quantitative PCR and RNA-seq, we found that foxr1 had an ovarian-specific expression in zebrafish, a common feature of maternal-effect genes. In addition, it was demonstrated using in situ hybridization that foxr1 was a maternally-inherited transcript that was highly expressed even in early-stage oocytes and accumulated in the developing eggs during oogenesis. We also analyzed the function of foxr1 in female reproduction using a zebrafish CRISPR/Cas9 knockout model. It was observed that embryos from the foxr1-deficient females had a significantly lower survival rate whereby they either failed to undergo cell division or underwent abnormal division that culminated in growth arrest at around the mid-blastula transition and early death. These mutant-derived eggs contained a dramatically increased level of p21, a cell cycle inhibitor, and reduced rictor, a component of mTOR and regulator of cell survival, which were in line with the observed growth arrest phenotype. Our study shows for the first time that foxr1 is an essential maternal-effect gene and is required for proper cell division and survival via the p21 and mTOR pathways. These novel findings will broaden our knowledge on the functions of specific maternal factors stored in the developing egg and the underlying mechanisms that contribute to reproductive fitness.
- Published
- 2018