1. iSeqQC: a tool for expression-based quality control in RNA sequencing
- Author
-
Gaurav Kumar, Adam Ertel, George Feldman, Joan Kupper, and Paolo Fortina
- Subjects
RNA sequencing quality control ,Count based QC ,Expression-based QC ,RNA seq QC tool ,Computer applications to medicine. Medical informatics ,R858-859.7 ,Biology (General) ,QH301-705.5 - Abstract
Abstract Background Quality Control in any high-throughput sequencing technology is a critical step, which if overlooked can compromise an experiment and the resulting conclusions. A number of methods exist to identify biases during sequencing or alignment, yet not many tools exist to interpret biases due to outliers. Results Hence, we developed iSeqQC, an expression-based QC tool that detects outliers either produced due to variable laboratory conditions or due to dissimilarity within a phenotypic group. iSeqQC implements various statistical approaches including unsupervised clustering, agglomerative hierarchical clustering and correlation coefficients to provide insight into outliers. It can be utilized through command-line (Github: https://github.com/gkumar09/iSeqQC) or web-interface (http://cancerwebpa.jefferson.edu/iSeqQC). A local shiny installation can also be obtained from github (https://github.com/gkumar09/iSeqQC). Conclusion iSeqQC is a fast, light-weight, expression-based QC tool that detects outliers by implementing various statistical approaches.
- Published
- 2020
- Full Text
- View/download PDF