1. New quantitative trait locus (QTLs) and candidate genes associated with the grape berry color trait identified based on a high-density genetic map
- Author
-
Lei Sun, Shenchang Li, Jianfu Jiang, Xiaoping Tang, Xiucai Fan, Ying Zhang, Jihong Liu, and Chonghuai Liu
- Subjects
Grape ,Berry color ,Anthocyanin ,High-density genetic map ,Quantitative trait locus (QTL) ,Candidate genes ,Botany ,QK1-989 - Abstract
Abstract Background Berry color is an important trait in grapes and is mainly determined by the anthocyanin content and composition. To further explore the coloring mechanism of grape berries, the F1 population of Vitis vinifera ‘Red Globe’ × ‘Muscat Hamburg’ was used to map the color locus, and transcriptome analysis was performed to assist in screening candidate genes. Results A total of 438,407 high-quality single-nucleotide polymorphisms (SNPs) were obtained from whole-genome resequencing (WGS) of the population, and 27,454 SNPs were selected to construct a high-density genetic map. The selected SNPs were clustered into 19 linkage groups (LGs) spanning a genetic distance of 1442.638 cM. Berry color was evaluated by color grade, chromatic aberration, total anthocyanin content and anthocyanin composition. The Pearson correlation coefficients of these phenotypes in 2017 and 2018 were significant at the 0.01 level. The major color locus of MYBA1 and MYBA2 on LG2 was identified, explaining between 26 and 63.6% of all phenotypic variance. Furthermore, 9 additional QTLs with smaller effects were detected on Chr2, Chr4, Chr6, Chr11 and Chr17. Combined with the gene annotation and RNA-seq data, multiple new candidate genes were selected from the above QTLs. Conclusion These results indicated that grape berry color is a quantitative trait controlled by a major color locus and multiple minor loci. Though the major color locus was consistent with previous studies, several minor QTLs and candidate genes associated with grape berry color and anthocyanin accumulation were identified in this study. And the specific regulatory mechanism still needs to be further explored.
- Published
- 2020
- Full Text
- View/download PDF