1. The miR-1290/OGN axis in ovarian cancer-associated fibroblasts modulates cancer cell proliferation and invasion
- Author
-
Biyao Jiang, Songshu Xiao, Shan Zhang, and Fang Xiao
- Subjects
Ovarian cancer ,cancer-associated fibroblasts (CAFs) ,miR-1290 ,OGN ,The Akt/mTOR pathway ,Gynecology and obstetrics ,RG1-991 - Abstract
Abstract Despite receiving first-line treatment, ovarian cancer patients continue to experience a high rate of recurrence; nearly all women with ovarian cancer develop chemoresistance and succumb to the disease. In this study, cancer-associated fibroblasts (CAFs) and normal fibroblasts (NFs) were isolated from tumor-containing and normal omenta, respectively, and the downregulation of osteoglycin (OGN) in CAFs was observed. OGN overexpression in CAFs significantly inhibited ovarian cancer cell viability, DNA synthesis, and cell invasion. OGN overexpression also changed epithelial-mesenchymal transition (EMT) markers and promoted mTOR and Akt phosphorylation in ovarian cancer cells. miR-1290 targeted OGN and inhibited OGN expression. miR-1290 overexpression in CAFs significantly promoted ovarian cancer cell viability, DNA synthesis, and cell invasion. Moreover, miR-1290 overexpression in CAFs also changed EMT markers and promoted mTOR and Akt phosphorylation within ovarian carcinoma cells. Finally, when ovarian cancer cells in a conditioned medium derived from CAFs co-transduced with miR-1290 mimics and OGN-OE were cultured, the effects of miR-1290 overexpression were partially reversed by OGN overexpression. In nude mouse xenograft tumor models, OGN overexpression in CAFs suppressed tumor growth, whereas miR-1290 overexpression in CAFs increased tumor growth. In conclusion, a miRNA/mRNA axis in ovarian cancer CAFs modulating the proliferative and invasive abilities of ovarian cancer cells, possibly via the Akt/mTOR pathway, was demonstrated.
- Published
- 2024
- Full Text
- View/download PDF