3 results on '"Valentin Barsan"'
Search Results
2. 75 Generalizability of potential biomarkers of response to CTLA-4 and PD-1 blockade therapy in cancer
- Author
-
Cara Haymaker, Randy F. Sweis, Uqba Khan, Christine N. Spencer, Sara Valpione, Vesteinn Thorsson, Yana G. Najjar, Anne Monette, Valentin Barsan, Erik Wennerberg, Sarah Entwistle, Steven Vensko, Alexandria P. Cogdill, Dante S. Bortone, Danny Wells, Roberta Zappasodi, Wungki Park, Houssein Abdul Sater, Vinita Popat, Nicholas Tschernia, Praveen K. Bommareddy, Maria Libera Ascierto, Nils Petter Rudqvist, Benjamin G. Vincent, and Heather M. McGee
- Subjects
CTLA-4 ,Potential biomarkers ,Cancer genome ,Cox proportional hazards regression ,Pd 1 blockade ,In patient ,Gene signature ,Biology ,Molecular biology ,T-Cell Receptor Repertoire - Abstract
Background Multiple genomics-based biomarkers of response to immune checkpoint inhibition have been reported or proposed, including tumor mutation/neoantigen frequency, PD-L1 expression, T cell receptor repertoire clonality, interferon gene signature expression, HLA expression, and others.1 Although genomics associations of response have been reported, the primary studies have used a variety of data generation and processing techniques. There is a need for data harmonization and assessment of generalizability of potential biomarkers across multiple datasets. Methods We acquired patient-level RNA sequencing FASTQ data files from 10 data sets reported in seven pan-cancer PD-1 and CTLA-4 immune checkpoint inhibition trials with matched clinical annotations.2–7 We applied a common bioinformatics workflow for quality control, mapping to reference (STAR), generating gene expression matrices (SALMON), T cell receptor repertoire inference (MiXCR), extraction of immune gene signatures and immune subtypes,8 and differential gene expression analysis (DESeq2). We analyzed i) immunogenomics features proposed as biomarkers, and ii) gene expression signatures built from each trial for association with overall survival across the set of trials using univariable Cox proportional hazards regression. In all, we assessed 9 total immunogenomics features/signatures. P-values were adjusted for multiple testing using the Benjamini-Hochberg method. Results Of the 9 immunogenomics features assessed, cytolytic activity score and expression of the Follicular Dendritic Cell Secreted Protein gene (FDCSP) were associated with survival in two of seven studies, respectively (adjusted p Conclusions No proposed biomarkers were highly generalizable across studies. We expect that integrated modeling incorporating multiple immunogenomics features will be required to build a robust and generalizable biomarker for ICI response. Further work is needed to analyze determinants of response and clinical benefit. Acknowledgements We would like to thank SITC for funding for this work as part of the Sparkathon TimIOS collaborative project. References Zappasodi R, Wolchok JD, Merghoub T. Strategies for Predicting Response to Checkpoint Inhibitors. Curr Hematol Malig Rep 2018;13(5):383–95. Liu D, Schilling B, Liu D, Sucker A, Livingstone E, Jerby-Arnon L, Zimmer L, Gutzmer R, Satzger I, Loquai C, Grabbe S, Vokes N, Margolis CA, Conway J, He MX, Elmarakeby H, Dietlein F, Miao D, Tracy A, Gogas H, Goldinger SM, Utikal J, Blank CU, Rauschenberg R, von Bubnoff D, Krackhardt A, Weide B, Haferkamp S, Kiecker F, Izar B, Garraway L, Regev A, Flaherty K, Paschen A, Van Allen EM, Schadendorf D. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat Med 2019;25(12):1916–27. Gide TN, Quek C, Menzies AM, Tasker AT, Shang P, Holst J, Madore J, Lim SY, Velickovic R, Wongchenko M, Yan Y, Lo S, Carlino MS, Guminski A, Saw RPM, Pang A, McGuire HM, Palendira U, Thompson JF, Rizos H, Silva IPD, Batten M, Scolyer RA, Long GV, Wilmott JS. distinct immune cell populations define response to anti-pd-1 monotherapy and Anti-PD-1/Anti-CTLA-4 Combined Therapy. Cancer Cell 2019;35(2):238–55 e6. Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB, Wang AC, Ellingson BM, Rytlewski JA, Sanders CM, Kawaguchi ES, Du L, Li G, Yong WH, Gaffey SC, Cohen AL, Mellinghoff IK, Lee EQ, Reardon DA, O’Brien BJ, Butowski NA, Nghiemphu PL, Clarke JL, Arrillaga-Romany IC, Colman H, Kaley TJ, de Groot JF, Liau LM, Wen PY, Prins RM. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med. 2019;25(3):477–86. Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS, Hodi FS, Martin-Algarra S, Mandal R, Sharfman WH, Bhatia S, Hwu WJ, Gajewski TF, Slingluff CL, Jr., Chowell D, Kendall SM, Chang H, Shah R, Kuo F, Morris LGT, Sidhom JW, Schneck JP, Horak CE, Weinhold N, Chan TA. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 2017;171(4):934–49 e16. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, Berent-Maoz B, Pang J, Chmielowski B, Cherry G, Seja E, Lomeli S, Kong X, Kelley MC, Sosman JA, Johnson DB, Ribas A, Lo RS. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 2016;165(1):35–44. Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, Dawson N, O’Donnell PH, Balmanoukian A, Loriot Y, Srinivas S, Retz MM, Grivas P, Joseph RW, Galsky MD, Fleming MT, Petrylak DP, Perez-Gracia JL, Burris HA, Castellano D, Canil C, Bellmunt J, Bajorin D, Nickles D, Bourgon R, Frampton GM, Cui N, Mariathasan S, Abidoye O, Fine GD, Dreicer R. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909–20. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy JA, Ziv E, Culhane AC, Paull EO, Sivakumar IKA, Gentles AJ, Malhotra R, Farshidfar F, Colaprico A, Parker JS, Mose LE, Vo NS, Liu J, Liu Y, Rader J, Dhankani V, Reynolds SM, Bowlby R, Califano A, Cherniack AD, Anastassiou D, Bedognetti D, Mokrab Y, Newman AM, Rao A, Chen K, Krasnitz A, Hu H, Malta TM, Noushmehr H, Pedamallu CS, Bullman S, Ojesina AI, Lamb A, Zhou W, Shen H, Choueiri TK, Weinstein JN, Guinney J, Saltz J, Holt RA, Rabkin CS, Cancer Genome Atlas Research N, Lazar AJ, Serody JS, Demicco EG, Disis ML, Vincent BG, Shmulevich I. The Immune Landscape of Cancer. Immunity 2018;48(4):812–30e14.
- Published
- 2020
- Full Text
- View/download PDF
3. P854 Construction of the immune landscape of durable response to checkpoint blockade therapy by integrating publicly available datasets
- Author
-
Daniel K. Wells, Erik Wennerberg, Benjamin G. Vincent, Christine N. Spencer, Heather M. McGee, Yana G. Najjar, Nils Rudqvist, Randy F. Sweis, Anne Monette, Houssein Abdul Sater, Uqba Khan, Maria Libera Ascierto, Cara Haymaker, Nicholas Tschernia, Praveen K. Bommareddy, Roberta Zappasodi, Vinita Popat, Sara Valpione, Alexandria P. Cogdill, Valentin Barsan, Vesteinn Thorsson, and Wungki Park
- Subjects
Clinical trial ,Immune system ,Cancer immunotherapy ,medicine.medical_treatment ,Systems biology ,medicine ,Cancer ,Computational biology ,Immunotherapy ,Biology ,medicine.disease ,Immune checkpoint ,Blockade - Abstract
Background Immune checkpoint blockade (ICB) has revolutionized cancer treatment. However, long-term benefits are only achieved in a small fraction of patients. Understanding the mechanisms underlying ICB activity is key to improving the efficacy of immunotherapy. A major limitation to uncovering these mechanisms is the limited number of responders within each ICB trial. Integrating data from multiple studies of ICB would help overcome this issue and more reliably define the immune landscape of durable responses. Towards this goal, we formed the TimIOs consortium, comprising researchers from the Society for Immunotherapy of Cancer Sparkathon TimIOs Initiative, the Parker Institute of Cancer Immunotherapy, the University of North Carolina-Chapel Hill, and the Institute for Systems Biology. Together, we aim to improve the understanding of the molecular mechanisms associated with defined outcomes to ICB, by building on our joint and multifaceted expertise in the field of immuno-oncology. To determine the feasibility and relevance of our approach, we have assembled a compendium of publicly available gene expression datasets from clinical trials of ICB. We plan to analyze this data using a previously reported pipeline that successfully determined main cancer immune-subtypes associated with survival across multiple cancer types in TCGA.1 Methods RNA sequencing data from 1092 patients were uniformly reprocessed harmonized, and annotated with predefined clinical parameters. We defined a comprehensive set of immunogenomics features, including immune gene expression signatures associated with treatment outcome,1,2 estimates of immune cell proportions, metabolic profiles, and T and B cell receptor repertoire, and scored all compendium samples for these features. Elastic net regression models with parameter optimization done via Monte Carlo cross-validation and leave-one-out cross-validation were used to analyze the capacity of an integrated immunogenomics model to predict durable clinical benefit following ICB treatment. Results Our preliminary analyses confirmed an association between the expression of an IFN-gamma signature in tumor (1) and better outcomes of ICB, highlighting the feasibility of our approach. Conclusions In line with analysis of pan-cancer TCGA datasets using this strategy (1), we expect to identify analogous immune subtypes characterizing baseline tumors from patients responding to ICB. Furthermore, we expect to find that these immune subtypes will have different importance in the model predicting response and survival. Results of this study will be incorporated into the Cancer Research Institute iAtlas Portal, to facilitate interactive exploration and hypothesis testing. References Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Yang T-H O, Porta-Pardo E. Gao GF, Plaisier CL, Eddy JA, et al. The Immune Landscape of Cancer. Immunity 2018; 48(4): 812–830.e14. https://doi.org/10.1016/j.immuni.2018.03.023. Auslander N, Zhang G, Lee JS, Frederick DT, Miao B, Moll T, Tian T, Wei Z, Madan S, Sullivan RJ, et al. Robust Prediction of Response to Immune Checkpoint Blockade Therapy in Metastatic Melanoma. Nat. Med 2018; 24(10): 1545. https://doi.org/10.1038/s41591-018-0157-9.
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.