1. Investigating change in network structure of eating disorder symptoms after delivery of a smartphone app-based intervention.
- Author
-
Linardon, Jake, Greenwood, Christopher J., Aarsman, Stephanie, and Fuller-Tyszkiewicz, Matthew
- Subjects
- *
BULIMIA treatment , *TREATMENT of eating disorders , *MOBILE apps , *SMARTPHONES , *RESEARCH funding , *STATISTICAL sampling , *TREATMENT effectiveness , *RANDOMIZED controlled trials , *TELEPSYCHOLOGY , *EATING disorders , *STATISTICS , *COGNITIVE therapy , *DISEASE relapse , *PATHOLOGICAL psychology , *PSYCHOSOCIAL factors - Abstract
Background Eating disorder (ED) research has embraced a network perspective of psychopathology, which proposes that psychiatric disorders can be conceptualized as a complex system of interacting symptoms. However, existing intervention studies using the network perspective have failed to find that symptom reductions coincide with reductions in strength of associations among these symptoms. We propose that this may reflect failure of alignment between network theory and study design and analysis. We offer hypotheses for specific symptom associations expected to be disrupted by an app-based intervention, and test sensitivity of a range of statistical metrics for identifying this intervention-induced disruption. Methods Data were analyzed from individuals with recurrent binge eating who participated in a randomized controlled trial of a cognitive-behavioral smartphone application. Participants were categorized into one of three groups: waitlist (n = 155), intervention responder (n = 49), and intervention non-responder (n = 77). Several statistical tests (bivariate associations, network-derived strength statistics, network invariance tests) were compared in ability to identify change in network structure. Results Hypothesized disruption to specific symptom associations was observed through change in bivariate correlations from baseline to post-intervention among the responder group but were not evident from symptom and whole-of-network based network analysis statistics. Effects were masked when the intervention group was assessed together, ignoring heterogeneity in treatment responsiveness. Conclusion Findings are consistent with our contention that study design and analytic approach influence the ability to test network theory predictions with fidelity. We conclude by offering key recommendations for future network theory-driven interventional studies. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF