1. Developing one-dimensional implosions for inertial confinement fusion science
- Author
-
T. S. Perry, Evan Dodd, William Daughton, Nathan Meezan, Doug Wilson, E. L. Dewald, B. J. Kozioziemski, Paul A. Bradley, J. D. Sater, L. F. Berzak Hopkins, Monika M. Biener, A. V. Hamza, S. A. Yi, Denise Hinkel, R. E. Olson, George A. Kyrala, R. J. Leeper, Omar Hurricane, Robert R. Peterson, David Strozzi, E. C. Merritt, Joseph Ralph, J. Biener, T. Braun, Debra Callahan, Andrei N. Simakov, Steven H. Batha, D. S. Montgomery, A. Nikroo, Lin Yin, Brian Haines, Alex Zylstra, Andrew MacPhee, Sebastien LePape, Tana Cardenas, Darwin Ho, John Kline, and R. C. Shah
- Subjects
Physics ,Nuclear and High Energy Physics ,Nuclear engineering ,Magnetic confinement fusion ,chemistry.chemical_element ,Implosion ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Symmetry (physics) ,010305 fluids & plasmas ,Electronic, Optical and Magnetic Materials ,law.invention ,Liquid fuel ,Ignition system ,Nuclear physics ,Nuclear Energy and Engineering ,chemistry ,Physics::Plasma Physics ,law ,0103 physical sciences ,Beryllium ,010306 general physics ,National Ignition Facility ,Inertial confinement fusion - Abstract
Experiments on the National Ignition Facility show that multi-dimensional effects currently dominate the implosion performance. Low mode implosion symmetry and hydrodynamic instabilities seeded by capsule mounting features appear to be two key limiting factors for implosion performance. One reason these factors have a large impact on the performance of inertial confinement fusion implosions is the high convergence required to achieve high fusion gains. To tackle these problems, a predictable implosion platform is needed meaning experiments must trade-off high gain for performance. LANL has adopted three main approaches to develop a one-dimensional (1D) implosion platform where 1D means measured yield over the 1D clean calculation. A high adiabat, low convergence platform is being developed using beryllium capsules enabling larger case-to-capsule ratios to improve symmetry. The second approach is liquid fuel layers using wetted foam targets. With liquid fuel layers, the implosion convergence can be controlled via the initial vapor pressure set by the target fielding temperature. The last method is double shell targets. For double shells, the smaller inner shell houses the DT fuel and the convergence of this cavity is relatively small compared to hot spot ignition. However, double shell targets have a different set of trade-off versus advantages. Details for each of these approaches are described.
- Published
- 2016
- Full Text
- View/download PDF