1. Response surface methodological optimization of batch Cu(II) sorption onto succinic acid functionalized SiO2 nanoparticles
- Author
-
Khalid Z. Elwakeel, Medhat A. Shaker, Amr A. Yakout, and Wael Alshitari
- Subjects
Acide succinique ,chemistry.chemical_compound ,Chemical engineering ,chemistry ,Succinic acid ,Sio2 nanoparticles ,Organic Chemistry ,Moiety ,Nano sio2 ,Sorption ,General Chemistry ,Catalysis - Abstract
Functionalizing nanosilica (n-SiO2) particles with suitable active organic moiety leads to the formation of surfaces with precisely controlled physical and chemical characteristics. In this work, a novel nanosorbent (31 ± 2.4 nm), namely succinic acid functionalized nanosilica (n-SiO2@SA), was synthesized via a simple protocol using microwave irradiation to remove Cu(II) ions from aqueous media. The successful functionalization of n-SiO2 was confirmed by FTIR, and the thermal stability of n-SiO2@SA was investigated by TGA study. Other techniques, including HRTEM, DLS and zeta-potential, were utilized to investigate the chemical, surface, and morphological properties of the fabricated n-SiO2@SA. The response surface methodology (RSM) combined with three-level, three-factorial Box–Behnken design (BBD) was applied to optimize the multivariable sorption system using data obtained from 17 batch runs to reach 98.9% of Cu(II) ion removal. The predicted optimal conditions were as follows: contact time = 30 min, pH = 7.1, initial Cu(II) concentration = 317.5 mg L−1, and sorbent dose = 15 mg at which the maximum sorption capacities for n-SiO2 and n-SiO2@SA were 209.3 and 386.4 mg g−1, respectively, at 25 °C, thus supporting the validity of functionalization process. Non-linear regression and linear least-squares methods confirm the suitability of Langmuir model to describe the experimental endothermic, feasible, and chemisorption data, whereas the normalized standard deviation Δq% recommends the pseudo second-order kinetic model to represent the kinetic data. Real Cu-contaminated wastewaters were used to examine n-SiO2@SA nanosorbent for removing Cu(II) ions.
- Published
- 2019
- Full Text
- View/download PDF