3 results on '"Guerrot AM"'
Search Results
2. ZMIZ1 Variants Cause a Syndromic Neurodevelopmental Disorder.
- Author
-
Carapito R, Ivanova EL, Morlon A, Meng L, Molitor A, Erdmann E, Kieffer B, Pichot A, Naegely L, Kolmer A, Paul N, Hanauer A, Tran Mau-Them F, Jean-Marçais N, Hiatt SM, Cooper GM, Tvrdik T, Muir AM, Dimartino C, Chopra M, Amiel J, Gordon CT, Dutreux F, Garde A, Thauvin-Robinet C, Wang X, Leduc MS, Phillips M, Crawford HP, Kukolich MK, Hunt D, Harrison V, Kharbanda M, Smigiel R, Gold N, Hung CY, Viskochil DH, Dugan SL, Bayrak-Toydemir P, Joly-Helas G, Guerrot AM, Schluth-Bolard C, Rio M, Wentzensen IM, McWalter K, Schnur RE, Lewis AM, Lalani SR, Mensah-Bonsu N, Céraline J, Sun Z, Ploski R, Bacino CA, Mefford HC, Faivre L, Bodamer O, Chelly J, Isidor B, and Bahram S
- Subjects
- Alleles, Animals, Child, Child, Preschool, Developmental Disabilities pathology, Female, Humans, Infant, Intellectual Disability pathology, Male, Mice, Syndrome, Transcription Factors chemistry, Transcription Factors metabolism, Developmental Disabilities genetics, Intellectual Disability genetics, Point Mutation, Transcription Factors genetics
- Abstract
ZMIZ1 is a coactivator of several transcription factors, including p53, the androgen receptor, and NOTCH1. Here, we report 19 subjects with intellectual disability and developmental delay carrying variants in ZMIZ1. The associated features include growth failure, feeding difficulties, microcephaly, facial dysmorphism, and various other congenital malformations. Of these 19, 14 unrelated subjects carried de novo heterozygous single-nucleotide variants (SNVs) or single-base insertions/deletions, 3 siblings harbored a heterozygous single-base insertion, and 2 subjects had a balanced translocation disrupting ZMIZ1 or involving a regulatory region of ZMIZ1. In total, we identified 13 point mutations that affect key protein regions, including a SUMO acceptor site, a central disordered alanine-rich motif, a proline-rich domain, and a transactivation domain. All identified variants were absent from all available exome and genome databases. In vitro, ZMIZ1 showed impaired coactivation of the androgen receptor. In vivo, overexpression of ZMIZ1 mutant alleles in developing mouse brains using in utero electroporation resulted in abnormal pyramidal neuron morphology, polarization, and positioning, underscoring the importance of ZMIZ1 in neural development and supporting mutations in ZMIZ1 as the cause of a rare neurodevelopmental syndrome., (Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
3. Exome sequencing identifies PDE4D mutations as another cause of acrodysostosis.
- Author
-
Michot C, Le Goff C, Goldenberg A, Abhyankar A, Klein C, Kinning E, Guerrot AM, Flahaut P, Duncombe A, Baujat G, Lyonnet S, Thalassinos C, Nitschke P, Casanova JL, Le Merrer M, Munnich A, and Cormier-Daire V
- Subjects
- Adolescent, Adult, Base Sequence, Child, Child, Preschool, Cyclic AMP-Dependent Protein Kinase RIalpha Subunit genetics, Cyclic Nucleotide Phosphodiesterases, Type 4, Female, Humans, Male, Molecular Sequence Data, Parathyroid Hormone metabolism, Signal Transduction genetics, Thyrotropin metabolism, Young Adult, Cyclic Nucleotide Phosphodiesterases, Type 3 genetics, Dysostoses genetics, Exome genetics, Intellectual Disability genetics, Mutation, Osteochondrodysplasias genetics, Sequence Analysis, DNA
- Abstract
Acrodysostosis is a rare autosomal-dominant condition characterized by facial dysostosis, severe brachydactyly with cone-shaped epiphyses, and short stature. Moderate intellectual disability and resistance to multiple hormones might also be present. Recently, a recurrent mutation (c.1102C>T [p.Arg368*]) in PRKAR1A has been identified in three individuals with acrodysostosis and resistance to multiple hormones. After studying ten unrelated acrodysostosis cases, we report here de novo PRKAR1A mutations in five out of the ten individuals (we found c.1102C>T [p.Arg368(∗)] in four of the ten and c.1117T>C [p.Tyr373His] in one of the ten). We performed exome sequencing in two of the five remaining individuals and selected phosphodiesterase 4D (PDE4D) as a candidate gene. PDE4D encodes a class IV cyclic AMP (cAMP)-specific phosphodiesterase that regulates cAMP concentration. Exome analysis detected heterozygous PDE4D mutations (c.673C>A [p.Pro225Thr] and c.677T>C [p.Phe226Ser]) in these two individuals. Screening of PDE4D identified heterozygous mutations (c.568T>G [p.Ser190Ala] and c.1759A>C [p.Thr587Pro]) in two additional acrodysostosis cases. These mutations occurred de novo in all four cases. The four individuals with PDE4D mutations shared common clinical features, namely characteristic midface and nasal hypoplasia and moderate intellectual disability. Metabolic screening was normal in three of these four individuals. However, resistance to parathyroid hormone and thyrotropin was consistently observed in the five cases with PRKAR1A mutations. Finally, our study further supports the key role of the cAMP signaling pathway in skeletogenesis., (Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.