1. Major axes of variation in tree demography across global forests
- Author
-
Melina de Souza Leite, Sean M. McMahon, Paulo Inácio Prado, Stuart J. Davies, Alexandre Adalardo de Oliveira, Hannes P. De Deurwaerder, Salomón Aguilar, Kristina J. Anderson-Teixeira, Nurfarah Aqilah, Norman A. Bourg, Warren Y. Brockelman, Nicolas Castaño, Chia-Hao Chang-Yang, Yu-Yun Chen, George Chuyong, Keith Clay, Álvaro Duque, Sisira Ediriweera, Corneille E.N. Ewango, Gregory Gilbert, I.A.U.N. Gunatilleke, C.V.S. Gunatilleke, Robert Howe, Walter Huaraca Huasco, Akira Itoh, Daniel J. Johnson, David Kenfack, Kamil Král, Yao Tze Leong, James A. Lutz, Jean-Remy Makana, Yadvinder Malhi, William J. McShea, Mohizah Mohamad, Musalmah Nasardin, Anuttara Nathalang, Geoffrey Parker, Renan Parmigiani, Rolando Pérez, Richard P. Phillips, Pavel Šamonil, I-Fang Sun, Sylvester Tan, Duncan Thomas, Jill Thompson, María Uriarte, Amy Wolf, Jess Zimmerman, Daniel Zuleta, Marco D. Visser, and Lisa Hülsmann
- Abstract
AimGlobal forests and their structural and functional features are shaped by many mechanisms that impact tree vital rates. Although many studies have tried to quantify how specific mechanisms influence vital rates, their relative importance among forests remains unclear. We aimed to assess the patterns of variation in vital rates among species and in space and time across forests to understand and provide a baseline for expectations of the relative importance of the different mechanisms in different contexts.Location21 forest plots worldwide.Time period1981-2021Major taxa studiedWoody plantsMethodsWe developed a conceptual and statistical framework (variance partitioning of multilevel models) that attributes the variability in growth, mortality, and recruitment to variation in species, space, and time, and their interactions, which we refer to asorganising principles(OPs). We applied it to data from 21 forest plots covering more than 2.9 million trees of approximately 6,500 species.ResultsDifferences among species, thespeciesOP, were a major source of variability in tree vital rates, explaining 28-33% of demographic variance alone, and in interaction withspace14-17%, totalling 40-43%. Models with small spatial grain sizes (quadrats at 5 × 5 m) retained most of the spatial OP, but a large proportion of variance remained unexplained (31-55%). The average variability among species declined with species richness across forests, indicating that diverse forests featured smaller interspecific differences in vital rates.Main conclusionsDecomposing variance in vital rates into the proposed OPs showed that taxonomy is crucial to predictions and understanding of tree demography. Our framework has a high potential for identifying the structuring mechanisms of global forest dynamics as it highlights the most promising avenues for future research both in terms of understanding the relative contributions of mechanisms to forest demography and diversity and for improving projections of forest ecosystems.
- Published
- 2023
- Full Text
- View/download PDF