Polygenic scores are increasingly powerful predictors of educational achievement. It is unclear, however, how sets of polygenic scores, which partly capture environmental effects, perform jointly with sets of environmental measures, which are themselves heritable, in prediction models of educational achievement. Here, for the first time, we systematically investigate gene-environment correlation (rGE) and interaction (GxE) in the joint analysis of multiple genome-wide polygenic scores (GPS) and multiple environmental measures as they predict tested educational achievement (EA). We predict EA in a representative sample of 7,026 16-year-olds, with 20 GPS for psychiatric, cognitive and anthropometric traits, and 13 environments (including life events, home environment, and SES) measured earlier in life. Environmental and GPS predictors were modelled, separately and jointly, in penalized regression models with out-of-sample comparisons of prediction accuracy, considering the implications that their interplay had on model performance. Jointly modelling multiple GPS and environmental factors significantly improved prediction of EA, with cognitive-related GPS adding unique independent information beyond SES, home environment and life events. We found evidence for rGE underlying variation in EA (rGE = .38; 95% CIs = .30, .45). We estimated that 40% (95% CIs = 31%, 50%) of the polygenic scores effects on EA were mediated by environmental effects, and in turn that 18% (95% CIs = 12%, 25%) of environmental effects were accounted for by the polygenic model, indicating genetic confounding. Lastly, we did not find evidence that GxE effects significantly contributed to multivariable prediction. Our multivariable polygenic and environmental prediction model suggests widespread rGE and unsystematic GxE contributions to EA in adolescence., Author summary Our study investigates the complex interplay between genetic and environmental contributions underlying educational achievement (EA). Polygenic scores are becoming increasingly powerful predictors of EA. While emerging evidence indicates that polygenic scores are not pure measures of genetic predisposition, previous quantitative genetics findings indicate that measures of the environment are themselves heritable. In this regard it is unclear how such measures of individual predisposition jointly combine to predict EA. We investigate this question in a representative UK sample of 7,026 16-year-olds where we provide substantive results on gene-environment correlation and interaction underlying variation in EA. We show that polygenic score and environmental prediction models of EA overlap substantially. Polygenic scores effects on EA are partly accounted for by their correlation with environmental effects; similarly, environmental effects on EA are linked to polygenic scores effects. Nonetheless, jointly considering polygenic scores and measured environments significantly improves prediction of EA. We also find that, although correlation between polygenic scores and measured environments is substantial, interactions between them do not play a significant role in the prediction of EA. Our findings have relevance for genomic and environmental prediction models alike, as they show the way in which individuals’ genetic predispositions and environmental effects are intertwined. This suggests that both genetic and environmental effects must be taken into account in prediction models of complex behavioral traits such as EA.